Proof the Binomial Model Converges to Black–Scholes

The binomial options-pricing model converges to Black–Scholes as the number of steps in fixed physical time goes to infinity. I present Chi-Cheng Hsia's 1983 proof of this result.

This is a companion post to my post on the binomial options-pricing model. Please see that post for an expository treatment of the binomial model. The goal here is to prove that the binomial model converges to Black–Scholes in the limit. This proof is from (Hsia, 1983).

Setup

First, let’s state both models and introduce notation. Let

binomial model:C=SB(a;n,π1)KrtB(a;n,π2),Black–Scholes:C=SN(d1)KrtN(d2),(1) \begin{aligned} \text{binomial model:} &\qquad& C &= S B (a; n, \pi_1) - K r^{-t} B(a; n, \pi_2), \\ \text{Black--Scholes:} &\qquad& C &= S N (d_1) - K r^{-t} N(d_2), \end{aligned} \tag{1}

where

B(x;n,p)=j=xn(nj)pj(1p)n1a=log(K/S)nlogdlog(u/d)+ζ,ζ[0,1),π2=(r0d)/(ud),π1=(u/r0)π2,(2) \begin{aligned} B(x; n, p) &= \sum_{j=x}^n {n \choose j} p^j (1 - p)^{n-1} \\ a &= \frac{\log(K/S) - n \log d}{\log(u/d)} + \zeta, \quad \zeta \in [0, 1), \\ \pi_2 &= (r_0-d)/(u-d), \\ \pi_1 &= (u/r_0) \pi_2, \end{aligned} \tag{2}

and

N(x)=x(1/2π2)ez2/2dz,d1=[log(S/K)+[logr+(1/2)σ2]t]σt,d2=d1σt,(3) \begin{aligned} N(x) &= \int_{-\infty}^x (1 / \sqrt{2 \pi_2}) e^{-z^2 / 2} dz, \\ d_1 &= \frac{\left[ \log(S/K) + \left[ \log r + (1/2) \sigma^2 \right] t\right]}{\sigma \sqrt{t}}, \\ d_2 &= d_1 - \sigma \sqrt{t}, \end{aligned} \tag{3}

and where

C=price of call at time zeroS=price of stock at time zeroS=price of stock at expiryK=strike pricet=time to expiryn=number of price changes in time tp=probability of an up moveπ2=risk-neutral probability of an up moveu=up factord=down factorr0=one plus risk-free interest rate for one period t/nr=one plus risk-free interest rate for unit timeμ=mean of stock priceσ2=variance of stock pricea=smallest number of up moves for the call to end in-the-money. \begin{aligned} C &= \text{price of call at time zero} \\ S &= \text{price of stock at time zero} \\ S^{*} &= \text{price of stock at expiry} \\ K &= \text{strike price} \\ t &= \text{time to expiry} \\ n &= \text{number of price changes in time $t$} \\ p &= \text{probability of an up move} \\ \pi_2 &= \text{risk-neutral probability of an up move} \\ u &= \text{up factor} \\ d &= \text{down factor} \\ r_0 &= \text{one plus risk-free interest rate for one period $t/n$} \\ r &= \text{one plus risk-free interest rate for unit time} \\ \mu &= \text{mean of stock price} \\ \sigma^2 &= \text{variance of stock price} \\ a &= \text{smallest number of up moves for the call to end in-the-money.} \end{aligned}

The binomial model assumes the stock price is a discrete-time process {Sn}\{S_n\}, which is a multiplicative random walk:

Sn=SX1X2Xn=Sn1Xn,(4) \begin{aligned} S_{n} &= S X_1 X_2 \cdots X_n \\ &= S_{n-1} X_n, \end{aligned}\tag{4}

where XiX_i (the up or down factor) is drawn i.i.d. based on a Bernoulli random variable, or

P(Xi=u)=p,P(Xi=d)=1p.(5) \mathbb{P}(X_i = u) = p, \qquad \mathbb{P}(X_i = d) = 1-p. \tag{5}

Black–Scholes assumes the stock price is a continuous-time process S(t)S(t), which is geometric Brownian motion. Thus, S(t)S(t) is defined as

S(t)=SeY(t),Y(t)=σB(t)+μt,(6) S(t) = S e^{Y(t)}, \qquad Y(t) = \sigma B(t) + \mu t, \tag{6}

where B(t)B(t) is Brownian motion, and where Y(t)Y(t) is Brownian motion with drift:

Y(t)N(μt,σ2t),B(t)N(0,t).(7) Y(t) \sim \mathcal{N}(\mu t, \sigma^2 t), \qquad B(t) \sim \mathcal{N}(0, t). \tag{7}

S(t)S(t) is lognormally distributed with parameters μ\mu and σ2\sigma^2 or equivalently logS(t)\log S(t) is normally distributed with parameters μ\mu and σ2\sigma^2.

Note that in the main post, the risk-neutral probability π2\pi_2 is denoted π\pi and variable here called π1\pi_1 is denoted ρ\rho. However, I have adopted slightly different notation here so that variable names “align” in Equation 11.

Proof

From Equation 11, it is clear that all we have to do to prove convergence from the binomial model to Black–Scholes is to prove that as nn \rightarrow \infty,

B(a;n,π1)dN(d1),B(a;n,π2)dN(d2),(8) \begin{aligned} B (a; n, \pi_1) &\quad\stackrel{d}{\rightarrow}\quad N (d_1), \\ B(a; n, \pi_2) &\quad\stackrel{d}{\rightarrow}\quad N(d_2), \end{aligned} \tag{8}

where d\stackrel{d}{\rightarrow} denotes convergence in distribution.

To do this, we first invoke the DeMoivre-Laplace’s theorem (CLT) to show that each binomial distribution converges to its respective normal distribution. See A1 for a brief review of this central limit theorem. To see this, let jj denote the binomial random variable (if jj is the outcome of a coin toss, it is heads or an up move with probability pp). Then by the symmetry of the binomial distribution, we have

B(a;n,q)=P(ja)=P(ja)=!P(jμjσja+μjσj,),(9) \begin{aligned} B(a; n, q) &= \mathbb{P}(j \geq a) \\ &= \mathbb{P}(j \leq -a) \\ &\stackrel{!}{=} \mathbb{P}\left( \frac{j - \mu_j}{\sigma_j} \leq \frac{-a + \mu_j}{\sigma_j}, \right), \end{aligned} \tag{9}

where μj=E[j]\mu_j = \mathbb{E}[j] and σj2=V[j]\sigma_j^2 = \mathbb{V}[j]. Be careful with the sign in step !!. Thus, the CLT tells us that as nn \rightarrow \infty, then

B(a;n,q)dN ⁣(a+μjσj).(10) \begin{aligned} B(a; n, q) \quad\stackrel{d}{\rightarrow}\quad N\!\left( \frac{-a + \mu_j}{\sigma_j} \right). \end{aligned} \tag{10}

Now let’s give a name to the fraction inside the normal CDF. The fraction looks a lot like the d1d_1 and d2d_2 terms in Black–Scholes, so let’s just call it dd:

d=a+μjσj.(11) d = \frac{-a + \mu_j}{\sigma_j}. \tag{11}

Since jj is a binomial random variable, we know μj=np\mu_j = np and σj=np(1p)\sigma_j = np(1-p). And we know that aa is

a=log(K/S)nlogdlog(u/d)+ζ,ζ[0,1).(12) a = \frac{\log(K/S) - n \log d}{\log(u/d)} + \zeta, \quad \zeta \in [0, 1). \tag{12}

See A2 for a derivation of aa. So we can plug these values into Equation 66 to get

d=a+μjσj=(log(K/S)nlogdlog(u/d)+ζ+np)/np(1p)=log(S/K)+nplog(u/d)+nlog(d)log(u/d)np(1p)+ζnp(1p).(13) \begin{aligned} d &= \frac{-a + \mu_j}{\sigma_j} \\ &= -\left( \frac{\log(K/S) - n \log d}{\log(u/d)} + \zeta + np \right) \bigg/ \sqrt{np(1-p)} \\ &= \frac{\log(S/K) + np \log(u/d) + n \log(d)}{\log(u/d) \sqrt{np(1-p)}} + \frac{\zeta}{\sqrt{np(1-p)}}. \end{aligned} \tag{13}

How can we simplify this? The key insight is to realize that most of the terms in the last line above can be represented as the mean and standard deviation of the log return from SS to SS^{*}. We can see this by computing the mean and variance of the lognormal random variable log(S/S)\log(S^*/S), giving us

E[log(S/S)]=n[plog(u/d)+log(d)],V[log(S/S)]=np(1p)log(u/d)2.(14) \begin{aligned} \mathbb{E}\left[ \log(S^{*} / S) \right] &= n \left[ p \log(u/d) + \log(d) \right], \\ \mathbb{V}\left[ \log(S^{*} / S) \right] &= np(1-p) \log(u/d)^2. \end{aligned} \tag{14}

See A3 for a derivation. Finally, observe that the ζ\zeta term will disappear once we will take nn \rightarrow \infty. So the upper bound in our Gaussian integral can be written as

d=log(S/K)+E[log(S/S)]Vq[log(S/S)].(15) d = \frac{\log(S/K) + \mathbb{E}[\log(S^{*} / S)]}{\sqrt{\mathbb{V}_q[\log(S^{*} /S)]}}. \tag{15}

And we know that the variance of the log return is

V[log(S/S)]=Vq[Y(t)]=σ2t.(16) \mathbb{V}[\log(S^{*}/S)] = \mathbb{V}_q[Y(t)] = \sigma^2 t. \tag{16}

This is a standard property of Brownian and geometric Brownian motion, and it should be clear from Equations 66 and 77.

To summarize so far, we have shown that B(a;n,π1)B(a; n, \pi_1) and B(a;n,π2)B(a; n, \pi_2) can both be written as

B(a;n,π)dN(d),d=log(S/K)+E[log(S/S)]σt,π{π2,π1}.(17) B(a; n, \pi) \stackrel{d}{\rightarrow} N(d), \quad d = \frac{\log(S/K) + \mathbb{E}[\log(S^{*} / S)]}{\sigma \sqrt{t}}, \quad \pi \in \{\pi_2,\pi_1\}. \tag{17}

To finish our proof, we just need to show that d=d1d = d_1 when the binomial parameter is π1\pi_1 and that d=d2d = d_2 when the binomial parameter is π2\pi_2. Or in other words,

as n,E[log(S/S)]={[logr+(1/2)σ2]tfor π=π1,[logr(1/2)σ2]tfor π=π2.(18) \text{as $n \rightarrow \infty$}, \qquad \mathbb{E}[\log(S^{*} / S)] = \begin{cases} \left[ \log r + (1/2) \sigma^2 \right] t & \text{for $\pi=\pi_1$}, \\ \left[ \log r - (1/2) \sigma^2 \right] t & \text{for $\pi=\pi_2$}. \end{cases} \tag{18}

Let’s first prove this result for π2\pi_2, the risk-neutral probability.

The definition of our multiplicative random walk (Equation 44) allows us to represent the raw return from zero to nn as

S/S=X1X2Xn=i=1nXi.(19) S^* / S = X_1 X_2 \cdots X_n = \prod_{i=1}^n X_i. \tag{19}

Now the expectation of each multiplicative factor XiX_i can be written as

E[Xi]=E[Si/Si1]=π2u+(1π2)d.(20) \mathbb{E}[X_i] = \mathbb{E}[S_i / S_{i-1}] = \pi_2 u + (1-\pi_2) d. \tag{20}

By risk-neutrality, we know the one-period expectation is equal to the one-period interest rate r0r_0 or

π2u+(1π2)d=r0.(21) \pi_2 u + (1-\pi_2) d = r_0. \tag{21}

And since each multiplicative factor is i.i.d., the total expectation is

E[S/S]=i=1N(π2u+(1π2)d)=[π2u+(1π2)d]n=r0n=rt.(22) \begin{aligned} \mathbb{E} [S^* / S] &= \prod_{i=1}^N (\pi_2 u + (1-\pi_2) d) \\ &= \left[ \pi_2 u + (1-\pi_2) d \right]^n \\ &= r_0^n \\ &= r^t. \end{aligned} \tag{22}

Finally, we need to use a property of the continuous-time process. If ZZ is a lognormal random variable with parameters ν\nu and s2s^2, then its expected value is

E[Z]=exp ⁣(ν+12s2).(23) \mathbb{E}[Z] = \exp\!\left( \nu + \frac{1}{2} s^2 \right). \tag{23}

And note that since SS^{*} is lognormally distributed,

Slognormal(logS+μt,σ2t),(24) S^* \sim \text{lognormal}\left(\log S + \mu t, \sigma^2 t\right), \tag{24}

then S/SS^{*}/S is lognormally distributed and log(S/S)\log(S^*/S) is normally distributed,

S/Slognormal(μt,σ2t),log(S/S)N(μt,σ2t).(25) \begin{aligned} S^*/S &\sim \text{lognormal}\left(\mu t, \sigma^2 t\right), \\ \log(S^*/S) &\sim \mathcal{N}\left(\mu t, \sigma^2 t\right). \end{aligned} \tag{25}

This allows us to write expectation and log expectation as

rt=E[S/S]=exp ⁣(μt+12σ2t),tlogr=μt+12σ2t,(26) \begin{aligned} r^t &= \mathbb{E}[S^*/S] = \exp\!\left( \mu t + \frac{1}{2} \sigma^2 t \right), \\ t \log r &= \mu t + \frac{1}{2} \sigma^2 t, \end{aligned}\tag{26}

which we can rewrite in terms of μt=E[log(S/S)]\mu t = \mathbb{E}[\log(S^*/S)] as

E[log(S/S)]=[logr12σ2]t(27) \mathbb{E}[\log(S^*/S)] = \left[ \log r - \frac{1}{2} \sigma^2 \right] t \tag{27}

as desired.

The proof of line convergence when π=π1\pi = \pi_1 is the roughly the same. Let’s repeat our logic from above but for S/SS/S^*. First, we can write

S/S=1X1X2Xn(28) S / S^* = \frac{1}{X_1 X_2 \cdots X_n} \tag{28}

by Equation 44. Following the same logic as above, we know the expected value of Si1/SiS_{i-1}/S_i is

E[Si1/Si]=π1(1u)+(1π1)1d=π2r0+1π2r0=1r0.(29) \begin{aligned} \mathbb{E}[S_{i-1}/S_i] &= \pi_1 \left( \frac{1}{u} \right) + (1-\pi_1) \frac{1}{d} \\ &= \frac{\pi_2}{r_0} + \frac{1-\pi_2}{r_0} \\ &= \frac{1}{r_0}. \end{aligned} \tag{29}

So the expectation of S/SS/S^* can be written as

E[S/S]=r0n=rt.(30) \mathbb{E}[S/S^*] = r_0^{-n} = r^{-t}. \tag{30}

Once again, we can take the log of both sides and use the fact that S/SS/S^* is lognormally distributed:

tlogr=E[S/S]=E[log(S/S)]+(1/2)V[log(S/S)]=E[log(S/S)]+(1/2)V[log(S/S)]=E[log(S/S)]+(1/2)σ2t.(31) \begin{aligned} -t \log r &= \mathbb{E}[S/S^*] \\ &= \mathbb{E}[\log(S/S^*)] + (1/2) \mathbb{V}[\log(S/S^*)] \\ &= \mathbb{E}[-\log(S^*/S)] + (1/2) \mathbb{V}[-\log(S^*/S)] \\ &= -\mathbb{E}[\log(S^*/S)] + (1/2) \sigma^2 t. \end{aligned} \tag{31}

Putting it all together, we get

E[log(S/S)]=[logr+12σ2]t(32) \mathbb{E}[\log(S^*/S)] = \left[ \log r + \frac{1}{2} \sigma^2 \right] t \tag{32}

as desired.

Conclusion

Perhaps the most notable observation about this proof is that we do not need to specify the risk-neutral probability π2\pi_2. We can choose π2\pi_2 however we would like, and we still get convergence. We will use this fact when fitting the binomial model in the main post. The condition that must hold, however, is the no-arbitrage condition. We used this assumption in Equation 2121.

 

Appendix

A1. De Moivre–Laplace theorem

Let XnX_n be a binomially distributed random variable with parameters nn and pp, and let XX be a normally distributed random variable with parameters npnp and np(1p)np(1-p),

Xnbinom(n,p),XN(np,np(1p)).(A1.1) X_n \sim \text{binom}(n, p), \qquad X \sim \mathcal{N}(np, np(1-p)). \tag{A1.1}

The De Moivre–Laplace (central limit) theorem states that the probability mass function of XnX_n approximates the probability density function (PDF) of XX for large nn:

P(Xn=x)fX(x)dx.(A1.2) \mathbb{P}(X_n = x) \approx f_X(x) dx. \tag{A1.2}

We can write this as

P(Xn=x)12π2np(1p)exp{(xnp)2/(2np(1p))}.(A1.3) \mathbb{P}\left( X_n = x \right) \approx \frac{1}{\sqrt{2 \pi_2 n p (1-p)}} \exp\left\{ -(x - np)^2 / (2np(1-p)) \right\}. \tag{A1.3}

If we normalize XnX_n, then the probability approximates the PDF of a standard normal random variable:

P(Xnnpnp(1p)=x)12π2exp{x2/2}.(A1.4) \mathbb{P}\left( \frac{X_n - np}{np(1-p)} = x \right) \approx \frac{1}{\sqrt{2 \pi_2}} \exp\left\{ -x^2 / 2 \right\}. \tag{A1.4}

Finally, this suggests that we can approximate the binomial CDF as a truncated Gaussian integral:

P(Xnnpnp(1p)x)x12π2exp{z2/2}dz.(A1.5) \mathbb{P}\left( \frac{X_n - np}{np(1-p)} \leq x \right) \approx \int_{-\infty}^x \frac{1}{\sqrt{2 \pi_2}} \exp\left\{ -z^2 / 2 \right\} dz. \tag{A1.5}

This fact is used in the main text.

 

A2. Solving for aa

We have defined aa as the smallest integer such as that the option is in-the-money or the smallest integer such that

uadnaS>K.(A2.1) u^a d^{n-a} S \gt K. \tag{A2.1}

To solve for aa, let’s take the log of both sides:

uadnaS>Kalogu+(na)logd+logS>logKa(logulogd)>logKlogSnlogda>log(K/S)nlogdlog(u/d).(A2.2) \begin{aligned} u^a d^{n-a} S &\gt K \\ a \log u + (n-a) \log d + \log S &\gt \log K \\ a (\log u - \log d) &\gt \log K - \log S - n \log d \\ a &\gt \frac{\log(K/S) - n \log d}{\log(u/d)}. \end{aligned} \tag{A2.2}

We can remove the inequality sign by introducing a slack variable ζ\zeta such that

a=log(K/S)nlogdlog(u/d)+ζ,ζ[0,1),(A2.3) a = \frac{\log(K/S) - n \log d}{\log(u/d)} + \zeta, \quad \zeta \in [0, 1), \tag{A2.3}

and we’re done.

 

A3. Solving for moments of the log return

The log stock return over the time to expiration is log(S/S)\log(S^{*} / S). We can express this in terms of up and down moves as

log(S/S)=log(ujdnjSS)=jlogu+(nj)logd=jlog(u/d)+nlogd.(A3.1) \begin{aligned} \log(S^{*} / S) &= \log\left(\frac{u^j d^{n-j} S}{S} \right) \\ &= j \log u + (n-j) \log d \\ &= j \log(u/d) + n \log d. \end{aligned} \tag{A3.1}

The mean is

E[log(S/S)]=E[j]log(u/d)+nlogd=nplog(u/d)+nlogd=n[plog(u/d)+log(d)].(A3.2) \begin{aligned} \mathbb{E}\left[ \log(S^{*} / S) \right] &= \mathbb{E}[j] \log(u/d) + n \log d \\ &= np \log(u/d) + n \log d \\ &= n \left[ p \log(u/d) + \log(d) \right]. \end{aligned} \tag{A3.2}

The variance is

V[log(S/S)]=V[j]log(u/d)2=np(1p)log(u/d)2.(A3.3) \begin{aligned} \mathbb{V}\left[ \log(S^{*} / S) \right] &= \mathbb{V}[j] \log(u/d)^2 \\ &= np(1-p) \log(u/d)^2. \end{aligned} \tag{A3.3}

  1. Hsia, C.-C. (1983). On binomial option pricing. Journal of Financial Research, 6(1), 41–46.