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Abstract

Latent variables allow researchers and engineers to encode assumptions into their statistical

models. A latent variable might, for example, represent an unobserved covariate, measure-

ment error, or a missing class label. Inference is challenging because one must account for the

conditional dependence structure induced by these variables, and marginalization is often

intractable. In this thesis, I present several practical algorithms for inferring latent structure

in probabilistic models used in computational biology, neuroscience, and time-series analysis.

First, I present a multi-view framework that combines neural networks and probabilistic

canonical correlation analysis to estimate shared and view-specific latent structure of paired

samples of histological images and gene expression levels. The model is trained end-to-end

to estimate all parameters simultaneously, and we show that the latent variables capture

interpretable structure, such as tissue-specific and morphological variation. Next, I present

a family of nonlinear dimension-reduction models that use random features to support non-

Gaussian data likelihoods. By approximating a nonlinear relationship between the latent

variables and observations with a function that is linear with respect to random features, we

induce closed-form gradients of the posterior distribution with respect to the latent variables.

This allows for gradient-based nonlinear dimension-reduction models for a variety of data

likelihoods. Finally, I discuss lowering the computational cost of online Bayesian filtering of

time series with abrupt changes in structure, called changepoints. We consider settings in

which a time series has multiple data sources, each with an associated cost. We trade the

cost of a data source against the quality or fidelity of that source and how its fidelity affects

the estimation of changepoints. Our framework makes cost-sensitive decisions about which

data source to use based on minimizing the information entropy of the posterior distribution

over changepoints.
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To explain all nature is too difficult a task for any one man or even for any one

age. ‘Tis much better to do a little with certainty, & leave the rest for others that

come after you, than to explain all things by conjecture without making sure of

any thing.

Isaac Newton, 1704.
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4A.7 Pólya–gamma augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 144
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Chapter 1

Introduction

1.1 Scientific data analysis with latent variables

The goal of science is to understand the physical world through observation, hypothesis,

and experimentation. Data analysis aids this process by discovering patterns in data. Sci-

entists can then use those patterns to formulate and test hypotheses. In 1854, for example,

London suffered a severe cholera outbreak. The physician John Snow mapped the loca-

tions of the cases and compared death-rates between water districts to find the root cause,

germ-contaminated water [Snow, 1855]. In other words, Snow used data visualization and

summary statistics to interpret his data and develop a testable scientific hypothesis.

Today, with emerging challenges such as climate change, widespread disinformation, and

global pandemics, we need data-based decision-making more than ever. With more data and

faster computers, machine learning, or the study of computer programs that automatically

learn patterns from data and then act on those inferences [Murphy, 2012], has the potential

to help address these types of global challenges. Machine learning can provide the tools

that researchers, engineers, policy-makers, and other practitioners need in order to make

sense of massive data sets that are often heterogeneous, non-stationary, richly structured,

and growing rapidly.

The idea that machines might learn from data is as old as the modern computer. In the

first half of the twentieth century, mathematicians and scientists were already asking ques-

tions such as whether neural activity could be described using propositional logic [McCulloch

and Pitts, 1943] or whether machines could think [Turing, 1950]. The now-famous “Dart-
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mouth workshop”1 in the summer of 1956 is widely considered to be the founding event of

the field of artificial intelligence, and it was held only a decade after the first electromechan-

ical computers were built. However, in the last few decades, machine learning, a subfield of

artificial intelligence, has emerged as the front-runner of the field. This prominence is due to

successes in computer vision [Krizhevsky et al., 2012], board and video game play [Campbell

et al., 2002, Mnih et al., 2013, Silver et al., 2016], natural language processing [Vaswani

et al., 2017], protein folding [Senior et al., 2020], and healthcare [Gulshan et al., 2016], to

name a few. Additionally, many other related research agendas have made important ad-

vances to address the scale, velocity, and heterogeneity of data in the modern world, such as

randomized algorithms for numerical linear algebra [Halko et al., 2011, Mahoney, 2016], sig-

nal processing techniques for reconstructing signals from inaccurate measurements [Candes

et al., 2006], approximation methods for scaling kernel machines [Snelson and Ghahramani,

2006, Rahimi and Recht, 2007, Wang et al., 2019], Bayesian nonparametric methods that

can handle an infinite number of parameters [Ferguson, 1973, Teh et al., 2006], generative

models for richly structured data [Kingma and Welling, 2013, Goodfellow et al., 2014], and

improved methods for automatic differentiation [Baydin et al., 2018] and automatic inte-

gration [Metropolis et al., 1953, Hastings, 1970, Duane et al., 1987, Hoffman and Gelman,

2014]. These research agendas are bolstered by the widespread adoption and support of

publicly available data sets [Deng et al., 2009, Geiger et al., 2012], open-source software

libraries [Harris et al., 2020, Virtanen et al., 2020], programming languages [Ihaka, 1998,

Bezanson et al., 2017], and new programming paradigms [Carpenter et al., 2017, Maclau-

rin et al., 2015, Paszke et al., 2017, Dillon et al., 2017]. In short, machine learning today

holds immense promise for many fields, and this promise is grounded in decades of work

by researchers across fields. The recent accelerants are massive data, faster computers, and

algorithms that automatically learn from data.

While learning from data could and often does refer to computer programs building

internal representations from data that can be used on downstream tasks, learning from data

can also refer to building representations that help humans understand their data better.

This latter sense of the phrase is particularly suited for scientific work. Scientists bring

1Officially, the Dartmouth Summer Research Project on Artificial Intelligence.
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significant prior knowledge that, at this time, is difficult to encode into algorithms. In Leo

Breiman’s famous paper on statistical modeling [Breiman et al., 2001], he posits two camps

or cultures on learning from data. One camp is interested in algorithmic modeling, without

considering data-generating mechanisms. Put simply, if it works, it works. The other camp

treats data as observations from stochastic processes and attempts to understand their data

by modeling those processes. One can then interpret their model’s inferences through an

explicit mathematical model. This thesis is firmly in the second camp. It takes a probabilistic

approach to machine learning [Hastie et al., 2009, Murphy, 2012, Ghahramani, 2015] because

such models have many desirable properties for scientific data analysis.2

The pillar of a probabilistic approach to machine learning is the statistical model men-

tioned above. In a statistical model, data are viewed as observations from a random process,

which is governed by some statistical or generative parameters. The goal is to infer these

generative parameters. For example, if we have a coin which we suspect is unfair, we can

flip it many times. These data can then be viewed as realizations from a Bernoulli process,

and statistical inference estimates the Bernoulli process’s bias parameter. While this is a

simple probabilistic model, the power of such an approach is that we can use all the tools

from probability theory to compose larger models in a mathematically principled way.

However, complex data often exhibit simpler but unobserved patterns that are not cap-

tured by statistical parameters. To model these patterns, we can introduce hidden or latent

variables into our models. A latent variable model, then, is simply a statistical model with

such unobserved variables. In the simplest inferential setting, a latent variable is distinct

from a parameter in that it is still a random variable, i.e. it is a draw from a distribution

rather than a quantity that specifies a distribution. However, the Bayesian statistician makes

no real distinction between latent variables and parameters, treating both as unknown ran-

dom variables. (I will discuss the Bayesian philosophy of statistics [Bayes, 1763, Laplace,

1820] later.) Another distinction, and one which persists under a Bayesian perspective, is

that often the number of parameters in a model is fixed, while the number of latent variables

2This view of machine learning is closely related to computational statistics, which bends the traditional
focus of statistical methods towards problems with large and heterogeneous data sets. However, I do not find
the distinction between statistics and machine learning to be particularly useful. Much like the distinction
between theory and practice, there exists a rich interplay between these two agendas that will likely increase
as the complexity and scale of problems grow.
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often grows with the number of observations.

We can appreciate the value of latent variable modeling through an example. Consider

the task of learning patterns from sequential data. Imagine that every day, a man flips a

coin to decide whether or not to take his umbrella to work, i.e. if the coin is heads with

some probability θ ∈ [0, 1], he takes his umbrella. However, he selects the coin from a set

of two coins depending on the weather. If it’s cloudy, he uses a coin with bias θcloudy = 0.8.

If it’s sunny, he uses a coin with bias θsunny = 0.05. However, we only observe whether or

not he takes his umbrella to work. Here, the statistical parameter of interest is still the

Bernoulli bias for each day t, call this θt ∈ {θcloud, θsunny}. However, the latent variable on

day t, call this zt, indexes into a set of states, specifying which bias to use. We have now

built a more complex model than the simple Bernoulli statistical model discussed above and

can infer more complex structure than can be modeled with just one bias parameter. We can

interpret our inferences of both the parameters and the latent variables through the context

of this mathematical model.

Scientists have been interested in latent variable models for over a century. Early pi-

oneering work in the field include factor analysis, developed by Charles Spearman in his

study of human intelligence [Spearman, 1904]; principal component analysis (PCA), devel-

oped by Karl Pearson for simplifying data sets [Pearson, 1901]; and canonical correlation

analysis (CCA), developed by Harold Hotelling for joint analysis of two multivariate data

sets [Hotelling, 1936]. Today, these factor models are still pervasive. See Engelhardt and

Stephens [2010] for just one example: using a sparse factor model to infer simpler patterns

from complex and high-dimensional genomics data. Latent variable models are particularly

appealing for applied tasks in science and engineering precisely because of their interpretabil-

ity. Practitioners can make sense of their data by inferring parameters and latent variables

and then understanding those quantities through the conditional dependency structure of

their models. See Blei [2014] for a more detailed overview and further discussion.

The examples above are all linear–Gaussian factor models because the observations are

assumed to be linear functions of Gaussian-distributed latent variables. Due to nice com-

putational properties of the Gaussian distribution (see Bishop [2006] for a discussion), these

models have been explored deeply, and these modeling assumptions connect a variety of
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seemingly unrelated methods [Roweis and Ghahramani, 1999]. PCA is just factor analysis

with isotropic variance. CCA is factor analysis with two data sets being generated from

shared latent variables. A dynamic form of a linear–Gaussian factor model is the Kalman

filter [Kalman, 1960], and the discrete-state version of the Kalman filter is the hidden Markov

model (HMM) [Baum and Petrie, 1966]. (See Minka [1999] for details on this connection.)

From another perspective, linear–Gaussian state space models such as the Kalman filter can

be reformulated as Gaussian random fields [Hartikainen and Särkkä, 2010]. In addition to

linear–Gaussian factor models, latent variable models have been used for nonlinear dimen-

sion reduction [Lawrence, 2004], clustering [Duda et al., 1973], topic modeling [Blei et al.,

2003], and non-stationary time series analysis [Adams and MacKay, 2007, Fearnhead and

Liu, 2007], to name just a few examples.

1.2 Practical algorithms for latent variable models

Despite their long history and use in statistics, psychology, genetics, and a variety of other

fields, latent variable models have mostly remained within the regime of linear–Gaussian

models. However, relatively recently, more flexible models have been developed. For exam-

ple, the Gaussian process latent variable model (GPLVM) [Lawrence, 2004] is a generalization

of PCA in which the observations are nonlinear rather than linear functions of the latent

variables. The autoencoder [Baldi and Hornik, 1989] was introduced as PCA with neural

networks. Methods such CCA and HMMs have also been extended to nonlinear settings

using neural networks [Andrew et al., 2013, Krishnan et al., 2017], and Bayesian filtering

algorithms for changepoint detection [Chib, 1998, Fearnhead, 2006, Chopin, 2007] are similar

to other dynamic programming approaches to time series data analysis such as HMMs, while

modeling a particular type of non-stationary behavior with possibly non-Gaussian data.

Inference is challenging in more flexible latent variable models because we must still

account for the conditional dependencies induced by the latent variables. The probabilistic

solution to this problem would be to marginalize out the latent variables, but this is often

intractable (see Bishop [2006] or Blei et al. [2017] for examples). In this thesis, I present

several practical algorithms for inferring latent structure with more flexible latent variable
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models for problems in computational biology, neuroscience, and time-series analysis.

The outline of my thesis is as follows. In Chapter 2, I present the necessary background

to understand this thesis, focusing on probabilistic modeling (as opposed to algorithmic

modeling), latent variable modeling, and Bayesian inference. In Chapter 3, I present deep

probabilistic canonical correlation analysis (DP-CCA). DP-CCA composes deep neural net-

works with probabilistic CCA [Bach and Jordan, 2005] to infer shared variation in paired

samples of histology images and molecular features. The inference challenge is to learn both

the neural network parameters and the latent variables jointly, using end-to-end inference

similar to a variational autoencoder [Kingma and Welling, 2013]. In Chapter 4, I present ran-

dom feature latent variable models (RFLVMs). RFLVMs are a class of nonlinear dimension

reduction methods that use random features [Rahimi and Recht, 2007] to induce analytic

tractability for GPLVMs with non-Gaussian observations. This allows for well-specified di-

mension reduction on non-Gaussian data, such as images and text. Finally, in Chapter 5, I

present a multi-fidelity approach to Bayesian online changepoint detection (BOCD) [Adams

and MacKay, 2007, Fearnhead and Liu, 2007]. Standard BOCD is a Bayesian online filtering

algorithm for non-stationary time series data. We extend BOCD to the multi-fidelity setting,

in which we have multiple data sources, each with an associated quality metric or “fidelity”,

as well as a cost. We propose an active fidelity selection strategy based on maximizing the

information rate (gain over cost) with respect to an important latent variable in BOCD that

models the current behavior of the time series. In Chapter 6, I discussion several future

directions and summarize my contributions.

The theme of the work in this thesis is the construction of mathematically principled

latent variable models and their application to scientifically interesting problems. By devel-

oping betters tools for more scalable, tractable, and flexible latent variable models, we can

accelerate the scientific process by automatically extracting interpretable insights from data.

1.3 How to read this

In my experience, the hardest part of graduate school was developing a deep enough under-

standing of my field such that I could think creatively. The challenge was two-fold. First,
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I had understand ideas rigorously, and then I had to move past rigor into intuition [Tao,

2009]. I suspect this struggle is common, but in my mind, the writing style of scientific

papers inadvertently obfuscates this struggle for others because it was designed to highlight

and convey novelty. Any concept that is not a main contribution is cited and then taken as

a given. This is good; scientific papers would constantly rehash prior work otherwise. How-

ever, a novice might mistake this writing style for how scientists actually think and produce

new ideas.

My aim in writing this thesis was to include the process, not just the products, of research.

As a consequence, the background material in Chapter 2 is broader and more elementary

than usual. Each main chapter contains extended background sections and even lengthier

appendices. The appendices contain many detailed notes, derivations, and computer pro-

grams that I made along the way, often circuitously, to the main ideas of the chapter. The

reader is encouraged to skip and re-read as desired. To quote Richard Feynman, “It is not

complicated. It is just a lot of it” [Dowling and Gassner, 1976].

I imagine the ideal reader is a curious person with a good grasp of calculus, probabil-

ity theory, and linear algebra—or my future self. For brevity, I take for granted that the

reader understands the basics of machine learning. I won’t, for example, define clustering,

supervised learning, or other elementary topics. If any ideas in this thesis are unfamiliar and

unexplained, please consult a textbook. My favorite machine-learning textbooks are Bishop

[2006] and MacKay [2003], since these explain ideas from first principles. Hastie et al. [2009]

and Murphy [2012] are excellent as references, while Gelman et al. [2013] is good for more

advanced topics in Bayesian data analysis. For advanced topics in numerical linear algebra,

which is useful for understanding the computational primitives upon which much of modern

data analysis is built, I recommend Trefethen and Bau III [1997].

Given that this thesis contains many detailed technical notes, written by and for myself

to learn new material and without review from others, it inevitably contains errors. My

apologies to the reader. The goal of these notes was to convince myself, and I suggest the

reader do the same.
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Chapter 2

Background

In this chapter, I present the main ideas required to understand this thesis. I first formalize

a probabilistic approach to machine learning [Ghahramani, 2015, Murphy, 2012], comparing

two well-known algorithms and formalizing the notion of statistical inference. I then discuss

latent variable modeling [Blei, 2014], or statistical modeling with unobserved structure. I give

an example of such a model and present an important algorithm for inferring parameters

and latent variables in such models. Finally, I discuss the Bayesian philosophy towards

inferential statistics [Bayes, 1763, Laplace, 1820], in which parameters are themselves random

variables. Methods for Bayesian inference can be broadly categorized into two groups, exact

and approximate, and I discuss a number of important ideas for both groups.

2.1 Probabilistic modeling

In a probabilistic approach to machine learning, our data X := {x1, . . . ,xN} are viewed

as realizations or observations from a random process. Formally, let P := {Pθ : θ ∈ Θ}

denote a class of models. This notation means that the distribution Pθ is from a family of

distributions, which are indexed by parameters θ ∈ Θ. For example, consider the family of

Poisson distributions. Here, θ is the Poisson’s rate parameter, Θ is the positive real numbers,

and each particular choice of θ ∈ R>0 induces a specific Poisson distribution.

In statistical modeling, the goal is to estimate optimal parameters θ? from data, such

that

x ∼ Pθ? , (2.1)
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is a good approximation of the assumed underlying data generating process, which in turn

is an approximation of nature.

Consider, for example, a standard binary classification task. Our data set D is a collection

of N targets or labels, yn ∈ {0, 1}, and N independent variables or features, xn ∈ RD. Denote

these data as D := {(y1,x1), . . . , (yN ,xN)}. Logistic regression is a statistical model such

that the marginal distribution of our targets is

yn | xn,θ ∼ Bernoulli (pn) , pn :=
exp

{
θ>xn

}
1 + exp {θ>xn}

. (2.2)

This model assumes that our observations are realizations from a Bernoulli process, and that

the bias of that process is a function of the independent variables. The coefficients θ define a

hyperplane in RD, and we can interpret the importance of each feature using the magnitude

of the associated coefficient (component in θ). The logistic function, f(x) = ex/(1 + ex), is

necessary to map θ>xn onto the support of the Bernoulli bias, ensuring pn ∈ [0, 1].

This example demonstrates how statistical modeling is not simply inferring parameters

from distributions. Rather, we can build and compose more complex models using proba-

bility theory.

2.1.1. Example: Gaussian mixture model

To motivate these ideas, I want to compare two approaches to clustering data: K-means and

a Gaussian mixture model (GMM). These models perform the same task in similar ways,

but GMMs are probabilistic. This comparison highlights the distinction between algorithmic

and probabilistic modeling, as discussed in Chapter 1 and in Breiman et al. [2001].

K-means. K-means is an unsupervised learning algorithm for partitioning N data points

into K clusters. Each cluster is represented by a single parameter µk, which is a D-vector

representing the cluster’s kth mean. Given independent variables without labels, X :=

{x1, . . . ,xN}, the goal is to find cluster assignments such that the total intra-cluster squared

Euclidean distance from the cluster means is minimized. We can also view this as finding

clusters with low variance.
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Figure 2.1: A visualization of the K-means algorithm (K = 2) on feature-scaled Old Faithful
data. First, the means are randomly initialized. Then each datum is assigned to one of two
clusters until convergence.

To express this as an objective function, we introduce one-hot vectors zn such that

variable znk = 1 if the cluster assignment is k for the nth data point. Then the objective is

to minimize the quantity J ,

J :=
N∑
n=1

K∑
k=1

znk‖xn − µk‖2
2. (2.3)

Our goal is to learn the mean parameters and cluster assignments. The algorithm for fitting

this model is an iterative procedure. At a high-level, the algorithm iteratively updates the

cluster assignments Z := {z1, . . . , zN} by minimizing J with respect to (w.r.t.) to Z while

keeping the cluster means U = {µk}Kk=1 fixed. Next, it updates U by minimizing J w.r.t.

to U while keeping Z fixed [Bishop, 2006]. The algorithm stops when it converges, meaning

when the value of J does not change between iterations1. I have visualized K-means on Old

Faithful data2 (Figure 2.13).

1Typically, this is quantified as when the difference in values for J between iterations is less than some small
value ε.

2http://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat
3This figure and Figure 2.3 were inspired by Bishop [2006].
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Once the algorithm has converged, we have a K-parameter model that allows us to cluster

or label new, unseen data. We assign a new datum xN+1 to one of the clusters by computing

the closest cluster mean, as quantified by the 2-norm ‖·‖2.

Gaussian mixture model. Note that nothing about K-means is probabilistic. There are

no statistical parameters or learned densities. Instead, K-means is a completely algorithmic

approach to the task of clustering.

To approach the problem from a probabilistic perspective, we can use a mixture model.

A mixture model represents a density as a mixture of weighted densities. For example, a

Gaussian mixture model (GMM) is a mixture model in which the weighted densities are all

Gaussian. This idea is easy to visualize with univariate Gaussian distributions (Figure 2.2).

Figure 2.2: A Gaussian mixture model that is a weighted combination of univariate Gaussian
distributions.

We can formalize a Gaussian mixture model as the sum of K weighted Gaussian densities,

called components, each with its own mean µk, covariance Σk, and mixture weight αk, writing

the density function as

pθ(x) =
K∑
k=1

αkN (x | µk,Σk), αk ≥ 0, (2.4)
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where θ = {(µk,Σk)}Kk=1. For example, the mixture model in Figure 2.2 can be written as

pθ(x) = 0.3N (x | 1, 2) + 0.2N (x | −2, 0.5) + 0.5N (x | 4, 1). (2.5)

We can see that the mixture weights must sum to unity for this to be a valid density function:

1 =

∫
X
p(x) =

∫
X

K∑
k=1

αkN (x | µk,Σk) =
K∑
k=1

αk

∫
X
N (x | µk,Σk) =

K∑
k=1

αk. (2.6)

Estimating the GMM cluster assignment variables and parameters is more complicated than

inference for K-means. However, it is also an iterative procedure, and I will discuss it

in Section 2.2.1.

To help visualize GMMs, I created a small (N = 500) synthetic data set4 with three

multivariate Gaussian densities, fit a GMM to the data, and then visualized the model at

various iterations (Figure 2.3).

Figure 2.3: A visualization of fitting a Gaussian mixture model (K = 3) on (a) synthetic
data. (b) The components are randomly initialized. (c-d) The parameters of the model are
iteratively updated using an algorithm discussed in Section 2.2.1.

Let’s now discuss a few of the benefits of probabilistic modeling. See Ghahramani [2015]

4I am not using the Old Faithful data set here because I want to demonstrate how GMMs handle overlapping
clusters.
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for a detailed discussion.

Handling uncertainty. In the algorithmic approach of K-means, the best parameters

θ? := {µ?k}Kk=1 given our data are fixed and do not encode any uncertainty about the pa-

rameters. But with a probabilistic approach, modeling our data given this uncertainty has

a natural mathematical solution, namely marginalization:

p(x) =

∫
Θ

pθ(x)p(θ)dθ. (2.7)

This marginal distribution allows us to remove our uncertainty about θ by considering all

possible parameter values. We will see in Section 2.3 that a Bayesian approach is particularly

interested in parameter marginalization and uncertainty quantification.

Modeling generative processes. A probabilistic model is sometimes referred to as a gen-

erative model because we can generate new data using our inferred parameters. Generative

modeling enriches our understanding of what the model has learned.

For example, with a GMM, we can sample a new assignment variable zN+1, since this

one-hot vector can be viewed as a categorical random variable with event probabilities α?,

which are the estimated mixture weights:

zN+1 ∼ Categorical(α?). (2.8)

This ensures that, in expectation, the number of generated data points for each cluster is

proportional to what we observed. Next, for the sampled cluster assignment zN+1, we can

sample from a multivariate Gaussian with our estimated parameters µ?zN+1
and Σ?

zN+1
:

xN+1 ∼ N
(
x | µ?zN+1

,Σ?
zN+1

)
. (2.9)

I have visualized the estimated density and some generated samples using this procedure

in Figure 2.4.

In my mind, this visualization really emphasizes the mixture weights. The figure visual-
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Figure 2.4: (Left) The inferred GMM density given our observations in Figure 3. (Right) One
hundred generated samples from our inferred GMM density using the sampling procedure
described in the text.

izes the mathematical fact that the blue density has the least amount of mass and that, as a

consequence, it is the least likely to be sampled from. We can inspect the model’s estimated

mixture weights and see that this is true:

green α→ 0.511

red α→ 0.295

blue α→ 0.194

(2.10)

The actual mixture weights for the synthetic data set are 0.5, 0.3, and 0.2, in the same order

as above.

Compositionality. An appealing property of a probabilistic approach is that simple dis-

tributions can be used as building blocks for more complex models. In other words, we can

judiciously compose random variables to encode conditional dependencies that model the

real world. The dominant paradigm for composing probability distributions in this way is

graphical modeling [Wainwright and Jordan, 2008]; other paradigms include Bayesian net-

works [Pearl, 1985], Markov networks [Kindermann, 1980], and mixed graphs [Beck et al.,

2013]. The benefit of composing probabilistic building blocks is that we can use probability

theory to interpret and understand larger models. Contrast this with the compositional-
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ity of neural networks. While neural networks can also be readily composed from simpler

building blocks, they are harder to reason about rigorously and their behavior is often less

well-defined. It is not surprising, then, that a probabilistic approach is often appreciated in

scientific applications, where interpretability is the goal.

2.1.2. Maximum likelihood estimation

Let’s now discussion how to infer the parameters of a statistical model, sometimes called

fitting the model. The standard approach is maximum likelihood estimation (MLE)5. The

idea is to find parameters θMLE such that our observations X have the highest probability

under the induced distribution PθMLE
. First, we define the likelihood function LN as the joint

probability function over N independent and identically distributed (i.i.d.) observations,

LN(θ) := p(x1, . . . ,xN | θ)
?
=

N∏
n=1

pθ(xn), (2.11)

where pθ is the probability function of the distribution Pθ. Step ? holds because we assume

our observations are i.i.d. In other words, if we know our model’s parameters θ, we don’t

need to know any other observation xm in order to reason about xn.

The MLE is the value that maximizes this likelihood function6:

θMLE := argmax
θ
LN(θ). (2.12)

Note that Equation (2.12) does not specify how to calculate the maximum likelihood esti-

mator θMLE. Instead, MLE is a framework and associated theory around the estimator θMLE.

We can compute θMLE in many different ways, such as gradient descent [Cauchy et al., 1847],

quasi-Newton methods [Broyden, 1967] such as the Broyden–Fletcher–Goldfarb–Shanno al-

gorithm [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970], or expectation–

maximization [Dempster et al., 1977].

In its modern formulation, maximum likelihood estimation has been studied by statis-

5To my knowledge, the “E” in “MLE” stands for either “estimation” or “estimator” depending on context.
6Often, we work with the log likelihood for practical reasons, such as numerical stability and ease of differ-
entiation. I will denote the log likelihood explicitly as logL.
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ticians for over a hundred years, at least since Ronald Fisher, and therefore has a rich and

well-developed theory [Stigler et al., 2007]. Under certain regularity conditions, for example,

the MLE is asymptotically efficient, meaning that in the limit of infinite data, the estimator

θMLE achieves minimum possible variance. See a discussion of the Cramér–Rao lower bound

in Shao [2003] for a detailed discussion.

Example: MLE for a Bernoulli model. Let’s examine the MLE in a simple setting.

Consider the task of estimating the bias θ of a Bernoulli process with observations x :=

{x1, . . . , xN}. Let M ≥ 0 be the number of successes. The probability of M successes in N

trials is a binomial random variable, and the likelihood function is

p(x | θ) =
N∏
n=1

pθ(xn) =
N∏
n=1

(
N

M

)
θxn(1− θ)1−xn =

(
N

M

)
θM(1− θ)N−M . (2.13)

To solve for the value of θ that maximizes our likelihood, we compute the derivative of

log pθ(x) with respect to θ, set it equal to 0, and solve for θ. The derivative is

∂

∂θ
log pθ(x) =

∂

∂θ
log

(
N

M

)
+

∂

∂θ
M log θ +

∂

∂θ
(N −M) log(1− θ)

∝ M

θ
− N −M

1− θ
.

(2.14)

The constant of proportionality is with respect to θ. The normalizer
(
N
M

)
disappears since

it does not effect the maximum of the function. Solving for θ when the derivative is equal

to 0, we get

θMLE =
M

N
=

1

N

N∑
n=1

xn. (2.15)

This worked, but only because we worked with a simple and analytically tractable distri-

bution. More generally, one can compute or approximate the MLE using gradient-based

optimization. See Vanderbei et al. [2015] for an introduction to the optimization theory.

Example: MLE for a Gaussian model. As a second example, let’s perform maximum

likelihood estimation on real data, course grades with integer values in the range [0, 19] from
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Figure 2.5: Gaussian model, N (x | 11.9, 3.2), fit to final math grades from the Student
Performance data set. The distribution’s mode is the mean parameter’s MLE.

the Student Performance data set7. Now let’s fit a Gaussian model. This means that we

want to find the parameters for the normal distribution, the mean µ and variance σ2, that

best fits the data. The log likelihood is:

logLN(µ, σ2) = −N
2

log(2πσ2)− 1

2σ2

N∑
n=1

(xn − µ)2. (2.16)

Again, we compute the derivative of logLN with respect to its two parameters, µ and σ2,

and then solve for µ and σ2 when these derivatives are set to 0. It is straightforward to show

that these operations produce the following estimators:

µMLE :=
1

N

N∑
n=1

xn,

σ2
MLE :=

1

N

N∑
n=1

(xn − µMLE)2.

(2.17)

Note that we first computed µMLE and then plugged that value into the equation for σ2
MLE.

Finally, we can calculate these parameters from the data and plot the resulting Gaussian

distribution, N (x | 11.9, 3.2) (Figure 2.5).

7https://archive.ics.uci.edu/ml/datasets/Student+Performance
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2.2 Latent variable modeling

Now that we understand a probabilistic approach to machine learning, let’s discuss a natural

extension of the idea, latent variable modeling. The central assumptions of latent variable

models are that complex data often exhibit simpler patterns and that these simpler patterns

are not necessarily captured by statistical parameters. Consider the GMM in Section 2.1.1,

for example. The generative parameters are θ = {(µk,Σk)}Kk=1. However, what are the

cluster assignment variables, Z = {z1, . . . , zN}? We call these latent variables. A latent

variable is an unobserved or hidden variable, as opposed to observed variables. As the GMM

example illustrates, latent variables allow us to explicitly encode richer structure into our

model. Again, a major benefit to latent variable models is that we can interpret the inferred

latent variables in terms of an explicit mathematical model.

Perhaps the simplest latent variable model is factor analysis [Spearman, 1904, Lawley

and Maxwell, 1962]:

xn = Wzn + un,

zn
iid∼ N (0, I),

un
iid∼ N (0,Ψ).

(2.18)

Here, Ψ is a diagonal but not necessarily scalar matrix. Let xn and zn be D- and K-vectors

respectively. Then W is a D ×K matrix or a linear transformation from RK to RD. As we

can see, the modeling assumption is that our observations X = {x1, . . . ,xN} are linear with

respect to the latent variables Z = {z1, . . . , zN}. The additive Gaussian noise un induces a

Gaussian assumption on our observations,

xn |W, zn,un ∼ N (Wzn,Ψ). (2.19)

Each component of the low-dimensional vector zn is a factor and can be interpreted as the

low-dimensional counterpart to the data’s features. Notice we have no labels Y. Thus,

this is a form of unsupervised learning, and a probabilistic version of dimension reduction.

Perhaps the most common latent variable model probabilistic principal component analysis

(PCA) [Tipping and Bishop, 1999], which I discuss in Section 4.3. Now we can see why this
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model is from the family of linear–Gaussian factor models.

2.2.1. Expectation–maximization

Inference for latent variable models is challenging, due to the conditional dependencies in-

duced by the latent variables. To perform maximum likelihood inference, we need to compute

the log likelihood logLN(θ) =
∏N

n=1 log pθ(x). However, our modeling assumption is that

we have some latent variables Z, which we must account for in some way. We could handle

these latent variables by marginalizing them out,

N∑
n=1

log pθ(xn) =
N∑
n=1

∑
z

log pθ(xn, z). (2.20)

However, this may be intractable. For example, in the Gaussian mixture model with N

observations with K mixture components, Equation (2.20) has KN terms.

There is a standard solution to this general problem: expectation–maximization (EM) [Demp-

ster et al., 1977]. EM relies on the fact that in many statistical problems, maximizing the

complete log likelihood log pθ(X,Z) is actually easier than maximizing the log likelihood. So

rather than optimizing Equation (2.20) directly, EM iteratively optimizes a lower bound. As

we will see, this lower bound is tight, meaning no greater value is also a lower bound, and

maximizing the lower bound guarantees that we maximize the likelihood. EM, then, is a

specific algorithm for performing maximum likelihood estimation.

First, let’s derive the lower bound,

log pθ(x) = log
∑

z

pθ(x, z)

= log
∑

z

q(z)
pθ(x, z)

q(z)

= log

(
Eq(z)

[
pθ(x, z)

q(z)

])
≥ Eq(z)

[
log

(
pθ(x, z)

q(z)

)]
.

(2.21)

The inequality holds because log is a concave function, allowing us to invoke Jensen’s in-
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equality (see Section 2A.1 for a discussion) for concave functions, log(E[a]) ≥ E[log(a)]. We

can then use log(a/b) = log(a)− log(b) and the linearity of expectation to write,

log pθ(x) ≥ Eq(z) [log pθ(x, z)]︸ ︷︷ ︸
Expected complete LL

− Eq(z) [log q(z)]︸ ︷︷ ︸
Entropy of q

. (2.22)

Notice that we have arbitrarily introduced a density, q(z). Which density should we choose if

we want a tight lower bound? Jensen’s inequality holds with equality if the concave function

f(·) is a constant or if
pθ(x, z)

q(z)
= non-random. (2.23)

For the fraction to be a constant, we know it must be true that q(z) ∝ pθ(x, z). And since

q(z) is a density and must normalize to one, we have

q(z) =
pθ(x, z)∑
z′ pθ(x, z

′)

=
pθ(x, z)

pθ(x)

= pθ(z | x).

(2.24)

Thus, we have found the ideal q(z) in our lower-bound approximation of the log likelihood.

We can rewrite the inequality in Equation (2.22) as an equality,

log pθ(x) = Epθ(z|x) [log pθ(x, z)]− Epθ(z|x) [log pθ(z | x)] . (2.25)

We are almost ready to construct the EM algorithm. However, since EM is an iterative

algorithm, let’s first introduce some notation based on iteration indexes. Let θt be the

parameter estimates at iteration t. Then let

log pθ(x) = Epθt (z|x) [log pθ(x, z)]− Epθt (z|x) [log pθ(z | x)]

:= Q(θ | θt) +H(θ | θt).
(2.26)

where Q(·) equal to the first expectation and H(·) equal to the negative of the second

expectation. This notation is meant to express an expectation of θ with respect to some
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other parameter value θt.

Now carefully consider the following reasoning. By Gibbs’ inequality (see MacKay [2003]

for a discussion), we know that

H(θ | θt) ≥ H(θt | θt). (2.27)

This is intuitive. The cross entropy (left-hand side) is always greater or equal to the entropy

(right-hand side). (See MacKay [2003] for a discussion of information entropy.) The measure

of “surprise” can only go up. Alternatively—and this is how many other authors explain

EM—you can note that H(θ | θt) − H(θt | θt) is a Kullback–Leibler (KL) divergence (see

Section 2A.2 for a discussion), which is nonnegative.

The above logic implies,

log pθ(x)− log pθt(x) = Q(θ | θt)−Q(θt | θt) +

≥0︷ ︸︸ ︷
H(θ | θt)−H(θt | θt)

≥ Q(θ | θt)−Q(θt | θt).
(2.28)

The inequality in Equation (2.28) demonstrates that if we maximize Q(θ | θt), then we

maximize the log likelihood log pθ(x) by the same amount.

Thus, EM works by iteratively optimizing the expected complete log likelihood Q(·)

rather than log pθ(x). It consists of two eponymous steps:

E-step: Q(θ | θt) = Epθt (z|x) [log pθ(x, z)]

M-step: θt+1 = argmax
θ

Q(θ | θt).
(2.29)

The E-step is so-called because it constructs the expectation of the complete log likelihood.

The M-step is so-called because it then maximizes that quantity. Intuitively we can think

of the E-step as constructing the desired lower bound, and the M-step as optimizing that

bound.
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2.2.2. Example: EM for factor analysis

To illustrate the EM algorithm, I will derive the EM updates for the factor analysis model

discussed in the introduction of this section. Let’s also rewrite Equation (2.18) by vectorizing

across N independent samples as

X = WZ + U, (2.30)

where X ∈ RD×N , Z ∈ RK×N and U ∈ RP×N .

To compute the EM updates, we first write down the expected complete log likelihood,

only including terms that depend on Z since we’re maximizing the parameters θ = {W,Ψ}

w.r.t. the log posterior log pθ(Z | X):

Q = E

[
−1

2

N∑
n=1

(xn −Wzn)>Ψ−1(xn −Wzn)− 1

2
ln |Ψ|+ C

]

∝ −1

2

N∑
n=1

E
[
x>nΨ−1xn − 2z>nW>Ψ−1xn + z>nW>Ψ−1Wzn

]
− N

2
ln |Ψ| .

= −1

2

N∑
n=1

x>nΨ−1xn︸ ︷︷ ︸
A

−2E[zn]>W>Ψ−1xn︸ ︷︷ ︸
B

+ tr
(
W>Ψ−1WE[znz

>
n ]
)
]︸ ︷︷ ︸

C


− N

2
ln |Ψ|︸ ︷︷ ︸
D

.

(2.31)

To compute EM updates for either W or Ψ, we compute the derivative of Equation (2.31)

w.r.t. each parameter, set the equation equal to zero, and solve for the parameter. We

can take derivatives of the terms labeled A, B, C, and D w.r.t. both parameters using the

excellent Matrix Cookbook [Petersen et al., 2008]:

∂B

∂W
= Ψ−1xnE[zn]>, MC.71

∂C

∂W
= 2Ψ−1WE

[
znz

>
n

]
, MC.117

(2.32)
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and
∂A

∂Ψ−1
= xnx

>
n , MC.72

∂B

∂Ψ−1
= xnE[zn]>W>, MC.70

∂C

∂Ψ−1
= WE

[
znz

>
n

]
W>, MC.102

∂D

∂Ψ−1
= −N

2
Ψ. MC.56

(2.33)

MC.X denotes Equation X in Petersen et al. [2008]. First, we can solve for the optimal W?:

∂Q

∂W
= −

N∑
n=1

Ψ−1xnE[zn]> +
N∑
n=1

Ψ−1WE[znz
>
n ],

⇓

W? =

(
N∑
n=1

xnE[zn]>

)(
N∑
n=1

E[znz
>
n ]

)−1

.

(2.34)

Next, we plug W? into the expected complete log likelihood in Equation (2.31) and solve

for Ψ:

∂Q

∂Ψ−1
= −1

2

N∑
n=1

[
xnx

>
n − 2xnE[zn]>[W?]> + W?E[znz

>
n ][W?]>

]
+
N

2
Ψ,

⇓

Ψ? =
1

N

N∑
n=1

[
xnx

>
n − 2xnE[zn]>[W?]> + W?E[znz

>
n ][W?]>

]
=

1

N

N∑
n=1

xnx
>
n −

1

N

N∑
n=1

2xnE[zn]>[W?]> +
1

N

N∑
n=1

W?E[znz
>
n ][W?]>.

(2.35)

We can simplify Equation (2.35) with the following observation based on the equality of Equa-

tion (2.34):

1

N

N∑
n=1

W?E[znz
>
n ][W?]> =

1

N

N∑
n=1

xnE[zn]>[W?]>. (2.36)

So we can simplify Equation (2.35) as

Ψ? =
1

N

N∑
n=1

xnx
>
n −

1

N

N∑
n=1

xnE[zn]>[W?]>. (2.37)
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To derive the posterior moments in Equation (2.32) and Equation (2.33), note that the

Gaussian assumptions on both zn and un induce a conditionally Gaussian assumption on xn,

xn |W, zn,un ∼ N (Wzn,Ψ), (2.38)

Since our prior on zn is also Gaussian, the posterior is Gaussian:

zn | xn ∼ N (MW>Ψ−1xn,M), (2.39)

where

M = (I + W>Ψ−1W)−1. (2.40)

See Bishop [2006] for details on the Gaussian distribution. We can use the covariance and

mean to solve for the second moment:

E
[
znz

>
n

]
= M + E[zn]E[zn]>, (2.41)

where the first moment is clearly

E[zn] = MW>Ψ−1xn. (2.42)

Now the EM updates in Equation (2.34) and Equation (2.37) match those given in Ghahra-

mani et al. [1996]. However, we can vectorize them as follows. First, let’s define the vectorized

quantity S as

S :=
[
E[z1] . . . E[zN ]

]
= MW>Ψ−1X. (2.43)

So S ∈ RK×N is a matrix of first posterior moments. Then the vectorized EM updates are

W? =

(
N∑
n=1

xnE[zn]>

)(
N∑
n=1

E[znz
>
n ]

)−1

=

(
N∑
n=1

xnx
>
nΨ−1WM

)(
N∑
n=1

[
M + MW>Ψ−1xnx

>
nΨ−1WM

])−1

= XS>(NM + SS>)−1,

(2.44)
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and

Ψ? =
1

N

N∑
n=1

xnx
>
n −

1

N

N∑
n=1

xnE[zn]>[W?]>

= Σ̃− 1

N

N∑
n=1

xnx
>
nΨ−1WM[W?]>

= Σ̃− Σ̃Ψ−1WM[W?]>,

(2.45)

where Σ̃ = (N − 1)−1XX>. In summary, we can write the EM algorithm for factor analysis

as:

E-step:

M = (I + W>Ψ−1W)−1,

S = MW>Ψ−1X,

A = NM + SS>.

M-step:

W? = XS>A−1,

Ψ? = diag
(
Σ̃− Σ̃Ψ−1WM[W?]>

)
.

(2.46)

We need the diagonalization operator because when finding the optimal value of Ψ since we

only care about the diagonal elements. In other words, this is a logical rather than linear

algebraic constraint.

Summary. EM is an iterative algorithm for estimating the parameters in a latent variable

model. It works by constructing a lower bound of model’s likelihood and then optimizing

that bound. See Wu [1983] for a proof of convergence of this algorithm. EM is also related to

another common technique for approximate inference in Bayesian models (discussed next),

called variational inference (VI). For completeness, I have included a short description of VI

in Section 2A.3. See Blei et al. [2017] for a more thorough introduction.

2.3 Bayesian modeling

The second extension to the basic probabilistic framework used in this thesis is the Bayesian

philosophy of inferential statistics. To motivate a Bayesian approach, consider the following
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low-data scenario. Imagine we flip a coin three times and observe three heads in a row.

Assume heads is denoted with unity and tails is denoted with zero. Is the coin biased? The

maximum likelihood estimate of the bias parameter, given by Equation (2.15), is θMLE =

(3/3)
∑3

n=1 xn = 1. However, intuitively, this is overfitting because we have prior knowledge

that most coins are fair. The Bayesian statistician resolves this issue by assuming that the

parameter θ is itself a random variable and to then apply Bayes’ theorem.

For any two events A and B, Bayes’ theorem [Bayes, 1763, Laplace, 1820] can be derived

from the definition of joint probability. Since

P(A,B) = P(B,A) =⇒ P(A | B)P(B) = P(B | A)P(A), (2.47)

then we can divide both sides in Equation (2.47) by P(A), provided P(A) 6= 0, to get

P(B | A) =
P(A | B)P(B)

P(A)
, P(A) 6= 0. (2.48)

Often, the denominator in Equation (2.48) is rewritten via marginalization:

P(A) =
∑
B′

P(A | B′)P(B′). (2.49)

Equation (2.48) quantifies the probability of event B given eventA in terms of the probability

of A given B and prior probabilities. We refer to P(A) and P(B) as prior probabilities because

they specify the probability of events A and B without conditioning on any other event. In

words, we might say: what we know about B given A depends on what we knew beforehand

about A and B, as well as how A depends on B. See Section 1.2 in Bishop [2006] for a more

detailed discussion.

For our purposes, Bayes’ theorem provides a principled way to do inference when our

parameters θ are random variables. Since θ is random, we must assume a distribution Π for

θ, called the prior distribution. We can then use Bayes’ theorem to compute a probability

function π(θ | X) which specifies how likely θ is given our observations X. This probability

function is associated with a distribution, called the posterior distribution, which I’ll denote

as Πθ|X. Thus, rather than inferring a point estimate or single value for θ, such as θMLE,

26



we infer a distribution over θ that depends on the data we observe. The numerator in

Bayes’ theorem is then just our likelihood (Equation (2.11)) times our prior probability

function. The denominator is the probability of our data independent of the parameters

and is often called the evidence. The evidence is typically ignored since the posterior mode

does not depend on this constant or normalizer, since it ensures the probability distribution

integrates or sums to unity.

Putting this all together, we have

Posterior︷ ︸︸ ︷
π(θ | x1, . . . ,xN) =

Likelihood︷ ︸︸ ︷
N∏
n=1

pθ(xn)

Prior︷ ︸︸ ︷
πα(θ)

p(x1, . . . ,xN)︸ ︷︷ ︸
Evidence

. (2.50)

The prior distribution has its own parameters, which we refer to as hyperparameters and

which I’ve denoted with α here. Hyperparameters are assumed, not inferred.

Because we have inferred a distribution over our parameters, we must account for uncer-

tainty about the actual value. The probabilist’s tool for dealing with uncertainty is marginal-

ization. Thus, Bayesian modeling is also concerned with a variety of integrals or expectations.

The marginal likelihood is the likelihood function with the parameters marginalized out:

pα(X) =

∫
Θ

[
N∏
n=1

pθ(xn)

]
πα(θ)dθ. (2.51)

Intuitively, Equation (2.51) captures the likelihood of the data without considering the

model-specific parameters. This has a variety of applications, such providing the Bayesian

statistician the tools to compare two models without considering the parameters. (See the

discussion of Bayesian model comparison in [Gelman et al., 2013] for details.) The posterior

predictive is the distribution over unobserved data given observed data:

p(xN+1 | X) =

∫
Θ

pθ(xN+1)πα(θ | X)dθ. (2.52)

Notice that we do not condition on X in the term pθ(xN+1). This is because the standard
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assumption is that unseen data xN+1 is conditionally independent of everything else given

the generative parameters θ. The posterior predictive distribution underscores the value

of modeling uncertainty in the parameter estimate. By integrating out θ, we weigh the

statistical model pθ(xN+1) by every possible value of θ using the posterior distribution’s

probability function.

Bayesian inference can be challenging because the posterior distribution (Equation (2.50))

may have no analytical form. If we multiply two probability functions together, it is not

obvious what the normalizing constant of the resultant unnormalized function is. And even

when the posterior distribution does have an analytical form, this may not be the case

for the marginal likelihood (Equation (2.51)) or the posterior predictive (Equation (2.52))

distributions.

Given these challenges, Bayesian inference can be grouped into three broad categories:

maximum a posteriori estimation (Section 2.3.1), which is the Bayesian analog to the MLE;

exact inference, which typically requires a property called conjugacy (Section 2.3.3); and

approximate inference, which requires numerical approximations such as Markov chain Monte

Carlo (Section 2.3.4) or variational inference (Section 2A.3). I introduce these and related

ideas in this order next.

2.3.1. Maximum a posterior estimation

Recall that the MLE of a parameter is simply the parameter value that maximizes the

likelihood function:

θMLE := argmax
θ
LN(θ). (2.53)

However, in a Bayesian approach, θ is random, and we account for this through a prior

distribution Πθ with density function π(θ). The maximum a posteriori (MAP) estimate is

θMAP := argmax
θ

π(θ | X)

∝ argmax
θ
LN(θ)π(θ),

(2.54)
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where proportionality is w.r.t. θ. We can drop the evidence because it is always positive

and does not depend on θ. It is constant for all possible values of θ and can be ignored in

any method that optimizes Equation (2.54).

Both the MLE and MAP estimates are point estimates. One view of the MAP estimate

is that it is the MLE regularized by the prior Π. However, a MAP estimate does not give

us uncertainty quantification of θ. Therefore, all things being equal, we would prefer to

use exact or approximate inference to infer the full posterior distribution π(θ | X). Exact

inference is possible when we use a conjugate prior, which I’ll discuss next.

2.3.2. Conjugate priors

Consider a prior distribution Π. If prior’s density function π(θ) times the likelihood LN(θ)

is the same functional form as the posterior’s density function π(θ | X), the prior is called

a conjugate prior. This means that the two boxed terms in Bayes’ formula below have the

same functional form:

π(θ | X) ∝ LN(θ) π(θ) . (2.55)

Conjugacy is a desirable property because it implies that the posterior has an analytical

form.

Furthermore, conjugacy allows for simple and interpretable Bayesian updating. First, we

begin with a prior π(θ). Then we observe a set of N observations X. We analytically infer a

posterior π(θ | X). Now imagine we observe xN+1. Since the posterior is the same functional

form as the prior, we simply update the posterior in the same way that we updated the prior,

resulting in a new posterior π(θ | X,xN+1).

Example: Beta–Bernoulli model. Let’s look at an example. Recall the task of inferring

the bias of a Bernoulli distribution (Section 2.1.2). We said that the MLE was problematic

in low-data scenarios because it could easily overfit. The Bayesian approach is to treat the

bias as a random variable and infer a posterior distribution rather than a point estimate.

What sort of prior should we place on the Bernoulli bias θ? We need a distribution with

support over the range [0, 1] and that can be shaped via hyperparameters. (Contrast this
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Figure 2.6: The beta distribution Beta(a, b) for a variety of hyperparameters a and b.

idea with the uniform distribution over [0, 1].) One distribution that has these properties is

the beta distribution (Figure 2.6), given by

Beta(µ | a, b) =
1

B(α, β)
θa−1(1− θ)b−1. (2.56)

B(·) is the beta function,

B(α, β) :=
Γ(a+ b)

Γ(a)Γ(b)
, (2.57)

where Γ(·) is the gamma function,

Γ(x) :=

∫ ∞
0

θx−1e−θdθ. (2.58)

At a high level, the gamma function can be viewed as a factorial function for complex

numbers. Intuitively, it appears in the normalizer for a variety of distributions because the

normalizing constant often requires some amount of bookkeeping as to the number of possible

outcomes.

Now let’s see how the beta distribution is a conjugate prior for the Bernoulli likelihood.

If we multiply our likelihood (Equation (2.13)) by our prior (Equation (2.56)), we get a

posterior that has the same functional form as the prior:

π(θ | X) ∝ LN(θ)π(θ)

=

(
N∏
n=1

θxn(1− θ)1−xn

)(
1

B(α, β)
θα−1(1− θ)β−1

)
∝ θ

∑
n xn+α−1(1− θ)N−

∑
n xn+β−1.

(2.59)

The first constant of proportionality is the evidence, p(X). The second constant of propor-
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tionality is the normalizer 1/B(α, β). Both can be dropped because they do not depend on

θ. Thus, we see that our posterior is another beta distribution:

π(θ | X) = Beta(αN , βN),

αN :=
N∑
n=1

xn + α,

βN := N −
N∑
n=1

xn + β.

(2.60)

This example underscores how we can interpret the posterior in certain simple settings.

In this case, the posterior density π(θ | X) is the same functional form as the prior density

π(θ). Both are density functions for beta distributions. The only difference between the two

distributions is that the posterior’s parameters account for the data.
∑

n xn is the number

of successes (ones), while N −
∑

n xn is the number of failures (zeros). The hyperparameters

α and β therefore capture prior knowledge about the a priori number of successes or fail-

ures. As we observe more data, the effect of the posterior updates “overwhelms” the prior’s

hyperparameters.

Figure 2.7: Visualizing the posterior distribution for n samples with n ∈ {0, 10, 20, 30}. As
the model accounts for more data, the posterior places more density around the true bias
from the generative process. And after each datum, the posterior becomes the new prior.
Note that the y-axes are at different scales and therefore the last frame is even more peaked
than the second-to-last frame.
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To see this in detail, consider a sequential setting, where we observe each datum in

{x1, . . . ,xN} in order, updating our posterior after each observation. Here, the posterior at

step n becomes the prior at step n+ 1. For example, imagine our model processes coin flips

one at a time. On the nth coin flip, we see a success or failure and increment our posterior

parameters at step n, αn and βn. Ideally, as we observe more data, the posterior concentrates

or becomes more peaked around the true parameter value (Figure 2.7).8

Now that we understand conjugacy, let’s address the problem of overfitting discussed

in Section 2.1.2. Does our Bayesian model resolve the issue of overfitting and if so, how?

Because this new posterior is in a tractable form, it is straightforward to compute θMAP. To

do this, we could compute the derivative of the posterior, set it equal to zero, and then solve

for θMAP. However, we know that the posterior is a beta distribution with parameters αN

and βN as defined in Equation (2.60). The beta distribution has a single mode:

αN − 1

αN + βN − 2
. (2.61)

Notice that if the number of successes and failures are both zero, if we have observed no

data, the MAP estimate is

θMAP =
α− 1

α + β − 2
. (2.62)

For example, if α = β = 2, then the MAP estimate without data is 1/2. (In other words,

when α = β = 2, the prior is that most coins are fair.) However, what about the case where

we observe three successes or heads in a row? Then the MAP estimate is

θMAP =
3 + α− 1

3 + α + β − 2
=

4

5
. (2.63)

Thus, despite seeing three heads in a row, the MAP estimate does not overfit to θMAP = 1.

The reason why is simply numeric: the prior’s hyperparameters prevent this. We need to

see more data before we overwhelm the prior values. This example demonstrates why the

prior is especially important for parameter estimation with small data and how it helps to

prevent overfitting.

8A large body of work in Bayesian statistics is concerned with how and when the posterior distribution
concentrates around the true parameter value as the model conditions on more data.
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As a final note, conjugacy often allows for simple forms for the marginal likelihood (Equa-

tion (2.51)) and posterior predictive (Equation (2.52)) distributions. In the beta–Bernoulli

example, these two distributions are relatively easy to compute. To compute the marginal

likelihood, we just leverage the integral definition of the beta function:

p(X) =

∫ 1

0

[
N∏
n=1

pθ(xn)

]
π(θ)dθ

=

∫ 1

0

1

B(α, β)
θ
∑
n xn+α−1(1− θ)N−

∑
n xn+β−1dθ

=
1

B(α, β)

∫ 1

0

θαN−1(1− θ)βN−1dθ

=
B(αN , βN)

B(α, β)
.

(2.64)

To compute the posterior predictive over an unseen observation xN+1, we integrate out our

uncertainty about the parameters θ. The easiest way to compute this is to just use our

previous derivation for the marginal likelihood. Since the prior and posterior are both beta

distributed, we know this should work:

p(xN+1 | X) =

∫ 1

0

pθ(xN+1)π(θ | X)dθ

=
1

B(αN , βN)

∫ 1

0

θx̂+αN−1(1− θ)1−xN+1+βN−1dθ

=
B(xN+1 + αN , 1− xN+1 + βN)

B(αN , βN)
.

(2.65)

2.3.3. Exponential family

Given the importance of conjugacy in exact Bayesian inference, it is useful to know when

this property holds. A family of distributions that all have conjugate priors, as well as a

variety of other important properties, is the exponential family [Pitman, 1936, Koopman,

1936, Darmois, 1935, Wainwright and Jordan, 2008]. Many commonly used distributions are

members of the exponential family, such as the Gaussian, exponential, gamma, chi-squared,

beta, Dirichlet, Bernoulli, categorical, Poisson, Wishart, inverse Wishart, and geometric

distributions. The basic idea of the exponential family is that any distribution that can be
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expressed in exponential family form has some nice mathematical properties.

The general form for any member of the exponential family is

pη(x) = h(x)g(η) exp
{
η>u(x)

}
, (2.66)

where, in exponential family terminology, η is the natural parameter, h(x) is the underlying

measure, u(x) is the sufficient statistic of the data, and g(η) is the normalizer, ensuring that

g(η)

∫
h(x) exp

{
η>u(x)

}
dx = 1. (2.67)

Equation (2.66) is sometimes written with the normalizer pushed inside the exponent. In

this case, the term is called the log normalizer. Let’s look at an example.

Example: Poisson distribution. Let x be a Poisson random variable with parameter

θ > 0. The probability function of the Poisson is

pθ(x) =
e−θθx

x!
(2.68)

and can be written in exponential family form as

pθ(x) =
1

x!
exp(−θ) exp(x log θ)

= h(x)g(η) exp(ηx)

(2.69)

where

η = log µ, h(x) =
1

x!
,

u(x) = x, g(η) = exp(− exp(η)).

(2.70)

Sufficient statistics. Why is u(x) called the sufficient statistic? Loosely speaking,
∑

i u(xi)

is all we need to compute the MLE for the natural parameters. To see this, let’s maximize

the log likelihood. For any distribution in exponential family form, the likelihood is

LN(η) =
N∏
n=1

pη(xn) =
N∏
n=1

h(xn)g(η) exp
{
η>u(xn)

}
. (2.71)
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And the log likelihood is

logLN(η) = log

(
N∏
n=1

h(xn)

)
+N log g(η) + η>

N∑
n=1

u(xn). (2.72)

To compute ηMLE, we compute the derivative of Equation (2.72), set it equal to 0, and solve

for η:

∇ log p(X | η) = ∇N log g(η) +∇η>
N∑
n=1

u(xn)

⇓

−∇ log g(η) = ∇η> 1

N

N∑
n=1

u(xn)

−∇ log g(ηMLE) =
1

N

N∑
n=1

u(xn)

(2.73)

Thus, the optimal natural parameters ηMLE only depend upon a function of
∑

n u(xn). This

all works because, by construction, g(η) has no dependence on X.

Conjugate priors. Every exponential family member has a conjugate prior of the form

πχ,ν(η) = f(χ, ν)g(η)ν exp
{
η>χ

}
, (2.74)

where ν and χ are hyperparameters and f(χ, ν) depends on the form of the exponential

family member. To verify conjugacy, recall that we must verify that the posterior has the

same functional form as the prior. We can see that this holds:

π(η | X,χ, ν)

∝ πχ,ν(η)
N∏
n=1

pη(xn)

=

[(
N∏
n=1

h(xn)

)
g(η)N exp

{
η>

N∑
n=1

u(xn)

}][
f(χ, ν)g(η)ν exp

{
η>χ

}]
=

(
N∏
n=1

h(xn)

)
f(χ, ν)g(η)N+ν exp

{
η>

N∑
n=1

u(xn) + η>χ

}
.

(2.75)
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Since the first N + 1 terms are constant w.r.t. η, we can write this as

πχ,ν(η | X) ∝ g(η)N+ν exp

{
η>

(
N∑
n=1

u(xn) + χ

)}
. (2.76)

Note that this posterior (Equation (2.76)) is the same exponential family form as the prior

(Equation (2.74)), just with different hyperparameters:

ν := νprior +N,

χ := χprior +
N∑
n=1

u(xn).
(2.77)

As mentioned in Section 2.3.3, conjugacy lends itself nicely to sequential learning. Let

subscript t index the parameters at time t. Then sequential updates for the exponential

family are

νt :=

νprior if t = 0,

νt−1 + 1 if t > 0,

χt :=

χprior if t = 0,

χt−1 + u(xt−1) if t > 0.

(2.78)

2.3.4. Markov chain Monte Carlo

Let’s review the logic of this section so far. In Bayesian inference, given data X := {x1, . . . ,xN}

and parameters θ, the posterior

π(θ | X) =

∏N
n=1 pθ(xn)πα(θ)

p(X)
(2.79)

is generally unavailable in closed form. In the last section, we showed how Bayesian posterior

inference is tractable when we use conjugate priors, a property available to a large class of

distributions called the exponential family. However, using only conjugate priors limits the

range and flexibility of the distributions at our disposal. Because of this, most contempo-

rary Bayesian inference research is concerned with numerical methods to approximate the
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posterior in some way. A broad class of algorithms with good theoretical guarantees that

allow for approximate inference of arbitrary densities is called Markov chain Monte Carlo

(MCMC) methods9. In the next section, I introduce the basic ideas about Markov chains to

understand MCMC. Please skip to Section 2.3.4 if you are familiar with Markov chains.

Markov chains. A Markov chain is a stochastic model that represents a set of states and

probabilities of transitioning between states. We can “walk” the Markov chain by starting

at an initial state and then changing states based on these transition probabilities. Speaking

loosely, imagine a frog jumping around on a lily pad field as walking a Markov chain; the

location of the frog on the field is the Markov chain’s state, and the transition probabilities

define how likely the frog is to jump to any other pad (state). Surprisingly, this simple

model can describe a wide range of problems. Markov chains were first presented by Andrey

Markov in his analysis of a poem by Eugene Onegin [Markov, 1913].

Let us formalize this concept.

Definition 2.3.1. Let D be a finite set. A random process x1,x2, . . . with values in D is

called a Markov chain if

P{xn+1, | xn, . . . ,x0} = P{xn+1 | xn}. (2.80)

We can think of xn as a random state at time n, and the Markovian assumption is that

the probability of transitioning from xn to xn+1 only depends on xn. In words, the future

depends only on the present. A Markov chain can be defined by a transition probability

matrix.

Definition 2.3.2. Let pij be the probability of transitioning from state i to state j. The

matrix P = [pij]i,j∈D is called the transition probability matrix.

Consider a simple Markov chain modeling the weather. We assume the weather has two

states: rainy and sunny. Let D = {r, s}. Therefore xn ∈ D represents the weather on day n.

The transition probabilities are as follows. If today is rainy (denoted r), tomorrow it is sunny

9This strange name is a combination of “Markov chain”, which is the mathematical object used in this
framework, and “Monte Carlo”, the name of a famous casino in Monaco
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Figure 2.8: State diagram for a Markov chain with states D = {r, s}. The probability of
moving from r to s is p and from s to r is q. The remaining probabilities can be computed
because the probabilities of the outgoing edges must sum to one.

(denoted s) with probability p. If today it is sunny, tomorrow it is rainy with probability q.

The transition matrix is then

P =

r s

r 1− p p

s q 1− q

(2.81)

Note that the rows of the matrix must sum to unity. The state diagram of this Markov chain

is Figure 2.8. We are interested in ergodicity, which is a property of a random process in

which its time average is the same as its probability space average. Formally, let the notation

Pi{xn = j} mean P{xn = j | x0 = i}. Then

Definition 2.3.3. A Markov chain x1,x2, . . . is called ergodic if the limit

π(j) := lim
n→∞

Pi{xn = j} (2.82)

exists for every state j and does not depend on the initial state i. The D-vector π is called

the stationary probability.

Intuitively, the probability π(j) of being on state j after a long time is independent of

the initial state i.10 In the frog analogy, an ergodic lily pad field means that regardless of

where the frog starts, they will always end up on the same pads with the same probability,

eventually.

10Typically, I use Π and π(·) to denote the prior distribution and probability functions respectively. However,
in this section, these will refer to the stationary distribution and probability function, as this follows
convention.
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Ergodicity has two conditions. If a Markov chain is irreducible, meaning any state is

reachable from any other state, and if it aperiodic, meaning the same state is not reached on

a fixed frequency, then it is ergodic. While we will not prove this fact, consider the following

intuition11: imagine two frogs are jumping around on a lily pad field, and that their transition

probabilities follow the same Markov chain. If the transition probabilities are such that the

frogs enter no periodic loops or subsets of the field from which they cannot escape, they will

eventually meet. At that point in time, since they are walking the same Markov chain, they

will be forever coupled. In this romantic view, if the two frogs are hopping around on an

ergodic lily pad field, they are fated to eventually meet, and after that moment, never part.

This proof technique is called coupling, since it allows one to “force” two unrelated

variables to be related in some way. To my knowledge, it was first used by Doeblin and

Fortet [1937] to prove the ergodicity of certain Markov chains.12

Implicit Markov chain construction. Now that we understand Markov chains, let’s

unpack MCMC algorithms. The first and most important MCMC algorithm is Metropolis–

Hastings. While there are a number of other MCMC algorithms, such as Gibbs sampling and

Hamiltonian Monte Carlo, Metropolis–Hastings contains all the foundational ideas required

to understand MCMC. Therefore, in this section, I will introduce MCMC by introducing

this algorithm.

Metropolis–Hastings (MH) is an elegant algorithm that is based on a truly deep idea.

11I first heard this intuition from Ramon van Handel at Princeton University.
12Wolfgang Doeblin had a tragic but noteworthy life. He was a born in Berlin in 1915 to Alfred and Erna

Döblin. His father was a famous writer. They were Jewish-German; and Alfred and his family sans
Wolfgang fled Berlin a few days after the Reichstag fire in February 1933. Wolfgang stayed behind until
April to complete his gymnasium studies. The family was reunited and settled in Paris later that year;
and Wolfgang continued his mathematical studies at the Sorbonne.

In the summer of 1936, Doeblin submitted his work on coupling [Doeblin and Fortet, 1937, Doeblin, 1939]
for publication. In March 1938, Doeblin defended his thesis—more or less [Doeblin, 1937]—and was drafted
into the French army in November. After the start of World War II in September 1939, Doeblin was moved
into active duty. In April 1940, Doeblin’s last mathematical note was filed with l’Academie des Sciences
by Émile Borel. The note was submitted as a pli cacheté (sealed envelope), which was designed to remain
sealed, granting its author intellectual priority if necessary without disclosing the work.

In 1940, Doeblin lost contact with his company while on a mission to the village Housseras. With Nazi
troops a few minutes away, Doeblin burned his mathematical notes and took his own life. Doeblin’s pli
cacheté was opened in 2000, revealing he had already proven a result (Itô’s lemma) for random processes.
See Bru and Yor [2002] further discussion.
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Suppose we want to sample from a target distribution Π∗. Assume that we can evaluate the

probability function π∗(·) associated with the distribution Π∗, but we cannot sample from

Π∗. MH performs a random walk according to a Markov chain whose stationary distribution

is Π∗. At each step in the chain, a new state is proposed and either accepted or rejected

according to a dynamically calculated probability, called the acceptance criteria. The Markov

chain is never explicitly constructed; we cannot save the transition probability matrix to disk

or print one of its rows. However, if our implicit Markov chain is ergodic and if the MH

algorithm is run for long enough, then the probability of being on a given state in the chain

is equal to the probability of the associated sample. Thus, walking the Markov chain and

recording states is, in the long-run, like sampling from Π∗.

Consider a Markov chain with transition kernel P (x,A) where x ∈ RD and A is a subset

of our sample space. A transition kernel is the generalization of a transition matrix from

finite to infinite state-spaces. So in words, P (x,A) is a conditional distribution function of

moving from x to a point in the set A. Naturally, P (x,RD) = 1 and self-loops are allowed,

meaning that P (x, {x}) is not necessarily zero.

The stationary distribution of a Markov chain can be defined through the probability

function π∗ where

π∗(dy) = π(y)dy =

∫
RD
P (x, dy)π(x)dx. (2.83)

This is just the continuous state-space analog of the discrete case. In a discrete Markov

chain {xn}∞n=1 taking values in D, if the transition matrix is P = [pij]i,j∈D, then stationary

distribution is

π∗ = π∗P (2.84)

where π∗ is a D-dimensional row vector. In words, the Markov chain has mixed when the

probability of being on a given state no longer changes as we walk the chain. Using the

romantic analogy from Section 2.3.4, the Markov chain has mixed when the two frogs meet.

The nth iterate or nth application of the transition kernel is given by

P (1)(x,A) := P (x,A),

P (n)(x,A) :=

∫
RD
P (n−1)(x, dy)P (y,A).

(2.85)
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As n goes to infinity, the nth iterate converges to the stationary distribution or

π∗(A) = lim
n→∞

P (n)(x,A). (2.86)

The above is an alternative definition of π∗(·).

The MCMC framework approaches the problem of sampling from Π∗ in a beautiful but

nonobvious way. Let’s imagine that Π∗ is the stationary distribution of a particular Markov

chain. If we could randomly walk that Markov chain, then we could sample from Π∗ even-

tually. Thus, we need to construct a transition kernel P (x,A) which converges to Π∗ in the

limit.

Suppose we represent the transition kernel as

P (x, dy) = p(x,y)dy + r(x)1(x ∈ dy), (2.87)

where p(x,y) is some function, 1(c) is an indicator random variable taking the value unity

if condition c is true and zero otherwise, and r(x) is defined as

r(x) = 1−
∫
RD
p(x,y)dy. (2.88)

Then alternatively, we can write the transition kernel as

P (x, dy) =

1−
∫
RD p(x,y)dy if x ∈ dy,

p(x,y)dy else.

(2.89)

Thus, r(x) is the probability that the Markov chain remains at x, and
∫
RD p(x,y)dy is not

necessarily one because r(x) is not necessarily zero.

Now consider the following reversibility constraint,

π(x)p(x,y) = π(y)p(y,x). (2.90)

If the function p(x,y) adheres to this constraint, then π(·) is the probability function of the

stationary distribution Π of the transition kernel P (x, ·). To see this, consider the following
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derivation [Tierney, 1994, Chib and Greenberg, 1995]:∫
P (x,A)π(x)dx

=

∫ [∫
A
p(x,y)dy

]
π(x)dx +

∫
r(x)1(x ∈ A)π(x)dx

=

∫
A

[∫
p(x,y)π(x)dx

]
dy +

∫
A
r(x)π(x)dx

?
=

∫
A

[∫
p(y,x)π(y)dx

]
dy +

∫
A
r(x)π(x)dx

=

∫
A

(1− r(y))π(y)dy +

∫
A
r(x)π(x)dx

=

∫
A
π(x)dx.

(2.91)

Step ? is the key. It only holds because of the reversibility constraint, and it’s what allows

us to cancel all terms except π(y)dy.

Let’s review. We want to sample from some target distribution Π∗. We imagine that

this distribution is the stationary distribution of some Markov chain, but we don’t know

the chain’s transition kernel P (x,A). The above derivation demonstrates that if we define

P (x,A) as Equation (2.87) and ensure that p(x,y) adheres to the reversibility constraint in

Equation (2.90), then we will have found the transition kernel for a chain whose stationary

distribution is our target distribution. This is the essence of Metropolis–Hastings. As we

will see, MH’s acceptance criteria is constructed to ensure that the reversibility constraint

is met.

Metropolis–Hastings. We want to construct the function p(x,y) such that it is reversible.

Consider a candidate generating distribution Qy|x with probability function q(y | x). This

distribution generates candidate samples y conditioned on x that will be either rejected or

accepted depending on some criteria. Note that if x and y are states, this is a Markov process

because no past states are considered. The future only depends on the present. Since Qy|x

is a distribution,
∫
q(y | x)dy = 1. If the following were true,

q(y | x)π(x) = q(x | y)π(y) (2.92)
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then we’re done. We’ve satisfied Equation (2.90). But most likely this is not the case. For

example, we might find that

q(y | x)π(x) ≥ q(x | y)π(y). (2.93)

Our random process moves from x to y more often than from y to x. MH ensures equilibrium

or reversibility by restricting some moves according to an acceptance criterion, α(x,y) ≤ 1.

Thus, if a move is not made, the process returns to x. Intuitively, this is what allows us to

balance q(y | x)π(x) with q(x | y)π(y). Let’s assume that moves from x to y happen more

often than the reverse. Then our criteria would be

q(y | x)π(x)α(x,y) = q(x | y)π(y)

α(x,y) =
q(x | y)π(y)

q(y | x)π(x)
.

(2.94)

Of course, the probabilities could be reversed, but we can handle both cases this with a

single expression:

α(x,y) = min

{
1,
q(x | y)π(y)

q(y | x)π(x)

}
. (2.95)

If MH moves from x to y more than the reverse, then the numerator is greater than the

denominator, and the probability of accepting a move to y from x goes down. If we move

from y to x more than the reverse, the sample (move from x to y) is accepted with probability

one.

We have found our function p(x,y). It is

pMH(x,y) = α(x,y)q(y | x), x 6= y. (2.96)

And while it is unnecessary to write down, for completeness the full transition kernel

PMH(x, y) is

PMH(x,y) =

Probability of leaving x︷ ︸︸ ︷
α(x,y)q(y | x) +

Probability of staying on x︷ ︸︸ ︷[
1−

∫
RD
α(x,y)q(y | x)dy

]
1(x ∈ dy). (2.97)
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In summary, if we sample from the conditional distribution Qy|x and accept the proposed

sample according to α(x,y), then we’ll be randomly walking according to a Markov chain

whose stationary distribution is Π∗.

Metropolis. Notice that for a symmetric conditional distribution, so when q(y | x) = q(x |

y), Equation (2.95) simplifies to

α(x,y) = min

{
1,
π(y)

π(x)

}
. (2.98)

This is the predecessor to Metropolis–Hastings, the Metropolis algorithm [Metropolis et al.,

1953]. In 1970, Wilfred Hastings extended Equation (2.98) to the more general asymmetrical

case in Equation (2.95) [Hastings, 1970]. If we assume, for example, that Qy|x is a condi-

tional Gaussian distribution, then running the Metropolis–Hastings algorithm is equivalent

to running the Metropolis algorithm.

Example: Rosenbrock density. Imagine we want to sample from the Rosenbrock distri-

bution (Figure 2.9) with the following probability function:

π∗(θ1, θ2; a, b) ∝ exp

{
−(a− θ1)2 + b(θ2 − θ2

1)2

20

}
. (2.99)

The Rosenbrock function [Rosenbrock, 1960] is a well-known test function in optimization

because while finding a minimum is relatively easy, finding the global minimum at (1, 1) is

less trivial. Goodman and Weare [2010] adapted the function to serve as a benchmark for

MCMC algorithms.

We must provide a candidate transition kernel q(θ? | θ). The only requirement is that we

can sample conditionally from it and that
∫
q(θ? | θ)dθ? = 1 for all θ. Perhaps the simplest

possible kernel is to simply add Gaussian noise to θ. Thus, our candidate transition kernel

is the distribution

θ? | θ ∼ N (θ, σ2), (2.100)

where the variance σ2 controls how big each step is. Since the distribution is symmetric,

we can implement the simpler Metropolis algorithm. We can accept a proposal sample with
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Figure 2.9: The Rosenbrock density (Equation (2.99)) with a = 1 and b = 100. Darker
colors indicate higher probability. The global minimum is at (x, y) = (a, a2) = (1, 1) and
denoted with a red “X”.

probability α(θ, θ?) by drawing a uniform random variable with support [0, 1], and checking

if it is less than the acceptance criteria. We can write MH in Python as the following:

1 import numpy as np

2 from numpy.random import multivariate_normal as mvn

3 import matplotlib.pyplot as plt

4

5 n_iters = 1000

6 samples = np.empty((n_iters, 2))

7 samples[0] = np.random.uniform(low=[-3, -3], high=[3, 10], size=2)

8 rosen = lambda x, y: np.exp(-((1 - x)**2 + 100*(y - x**2)**2) / 20)

9

10 for i in range(1, n_iters):

11 curr = samples[i-1]

12 prop = curr + mvn(np.zeros(2), np.eye(2) * 0.1)

13 alpha = rosen(*prop) / rosen(*curr)

14 if np.random.uniform() < alpha:

15 curr = prop

16 samples[i] = curr

17

18 plt.plot(samples[:, 0], samples[:, 1])
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19 plt.show()

That’s it. Despite its conceptual depth, Metropolis–Hastings is surprisingly simple to

implement, and it is not hard to imagine writing a more general implementation that handles

Equation (2.95) for any arbitrary π and q(·).

Figure 2.10: Three randomly initialized Markov chains run on the Rosenbrock density (Equa-
tion (2.99)) using the Metropolis–Hastings algorithm. After mixing, each chain walks in
regions where the probability is high. The global minimum is at (x, y) = (a, a2) = (1, 1) and
denoted with a black “X”.

The above code is the basis for Figure 2.10, which runs three Markov chains from ran-

domly initialized starting points. This example highlights two important implementation

details for Metropolis–Hastings. First, step size (or σ2 for our candidate distribution) is im-

portant. If the step size were too large relative to the support of the Rosenbrock distribution,

it would be difficult to sample near the distribution’s mode. Second, typically, the initial

samples from an MCMC sampler are discarded. This is because samples before the chain

starts to mix are not representative of the stationary distribution. This period of discarding

samples is called the burn-in period.

2.3.5. Gibbs sampling

Gibbs sampling is a special case of Metropolis–Hastings in which the newly proposed state is

always accepted with probability one. It is fairly straightforward to see this. Consider a D-

dimensional posterior with parameters θ = {θ1, . . . , θD}. The basic idea of Gibbs sampling
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is to iteratively sample from the conditional distribution Pθd|X,θ−d where θ−d is θ without

the dth parameter. Let θ
(t)
k denote the value of the kth component of θ on the tth iteration.

Then Gibbs sampling is Algorithm 1.

Algorithm 1: Gibbs sampling

for t = 1, . . . T do

θ
(t+1)
1 := θ?1 ∼ P

θ
(t)
1 |X,θ

(t)
2 ,θ

(t)
3 ,...,θ

(t)
D

θ
(t+1)
2 := θ?2 ∼ P

θ
(t)
2 |X,θ

(t+1)
1 ,θ

(t)
3 ,...,θ

(t)
D

θ
(t+1)
d := θ?d ∼ P

θ
(t)
d |X,θ

(t+1)
1 ,...,θ

(t+1)
d−1 ,θ

(t)
d ,...,θ

(t)
D

...

θ
(t+1)
D := θ?D ∼ P

θ
(t)
D |X,θ

(t+1)
1 ,θ

(t+1)
2 ,...,θ

(t+1)
D−1

To see why this works, first note that

p(θ | X) = p(θd,θ−d | X) = p(θd | X,θ−d)p(θ−d | X). (2.101)

Ignoring the iterates’ notation, the probability of a transition can be written as

α(θ? | θ) = min

{
1,
p(θ? | X)p(θd | X,θ−d)
p(θ | X)p(θ?d | X,θ?−d)

}
= min

{
1,
p(θ?d | X,θ?−d)p(θ?−d | X)p(θd | X,θ−d)
p(θd | X,θ−d)p(θ−d | X)p(θ?d | X,θ?−d)

}
= 1.

(2.102)

In Equation (2.102), I have color-coded the terms that cancel. In particular, the terms in

red cancel because θ?−d = θ−d. In other words, in each step of the Gibbs sampling algorithm,

we are performing a Metropolis–Hastings-like random walk in which the proposed next state

always adheres to the reversibility constraint.

The primary advantage of Gibbs sampling is simple: proposals are always accepted. The

primary disadvantage is that we need to be able to derive the above conditional probability

distributions. This is tractable when dealing with conditionally conjugate models.
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2.4 Summary

To summarize, a probabilistic approach to machine learning is appealing because such models

can handle parameter uncertainty through marginalization, be interpreted through explicit

generative processes, and be composed with other models using probability theory. Latent

variable models are a class of statistical models which introduce unobserved or latent vari-

ables to model more complex phenomena. These models are particularly useful in scientific

applications because one can interpret the latent variables through the conditional depen-

dency structure of the model. The Bayesian philosophy of inferential statistics uses Bayes’

theorem to infer a posterior distribution over parameters and latent variables, rather than

estimating a single value. To the Bayesian, there is no real distinction between statistical

parameters and latent variables; both are random variables to be inferred through Bayes’

theorem.

Broadly, methods for Bayesian inference can divided into exact and approximate tech-

niques. Conjugate models are useful because we have exact analytic updates of the poste-

rior. However, conjugate models are typically from the exponential family and are limited

in flexibility and representational power. Approximate Bayesian inference is a broad class

of techniques for inferring posteriors in the absence of a tractable posterior. Methods such

as expectation–maximization, Markov chain Monte Carlo, and variational inference are all

approximate inference methods.
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2A Appendix

2A.1 Jensen’s inequality

Let f be a convex function. Then Jensen’s inequality is

f

(
N∑
n=1

αnxn

)
≤

N∑
n=1

αnf(xn) (2.103)

where αn ≥ 0 and
∑N

n=1 αn = 1. (The inequality is reversed if f is concave.)

Proof. The proof is by induction. First, consider the base case:

f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2). (2.104)

This clearly holds because f is convex. Now for the inductive case, we want to show that

f

(
K∑
n=1

αnxn

)
≤

K∑
n=1

αnf(xn) =⇒ f

(
K+1∑
n=1

αnxn

)
≤

K+1∑
n=1

αnf(xn). (2.105)

First, let’s start with our inductive hypothesis and add αK+1f(xK+1) to both sides:

f

(
K∑
n=1

αnxn

)
+ αK+1f(xK+1) ≤

K+1∑
n=1

αnf(xn). (2.106)
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Now the α terms on the right-hand side no longer sum to unity. Let’s normalize both sides

of the equation by multiplying by 1
1+αK+1

:

A︷ ︸︸ ︷
1

1 + αK+1

f

(
K∑
n=1

αnxn

)
+

B︷ ︸︸ ︷
αK+1

1 + αK+1

f(xK+1) ≤ 1

1 + αK+1

K+1∑
n=1

αnf(xn). (2.107)

This normalization constant makes sense because
∑K

n=1 αn = 1 ⇐⇒
∑K+1

n=1 αn = 1 + αK+1.

Now note that the terms labeled A and B above sum to unity. And since f is convex, we

can say

f

(
1

1 + αK+1

K∑
n=1

αnxn +
αK+1

1 + αK+1

xK+1

)

≤ 1

1 + αK+1

f

(
K∑
n=1

αnxn

)
+

αK+1

1 + αK+1

f(xK+1).

(2.108)

At this point, we’re basically done. The left-hand side of the above inequality can be sim-

plified to

f

(
1

1 + αK+1

K+1∑
n=1

αnxn

)
, (2.109)

which we have already shown is less than or equal to

1

1 + αK+1

K+1∑
n=1

αnf(xn), (2.110)

as desired.

Jensen’s inequality for random variables. Now consider this: since αn ≥ 0 and∑
i αn = 1, we can interpret αn as the probability of a random variable x taking on a

specific value, giving us

f (E[x]) ≤ E [f(x)] , (2.111)

which for discrete distributions is equivalent to

f

(∑
x

xp(x)dx

)
≤
∑

x

f(x)p(x)dx. (2.112)
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2A.2 KL divergence

The Kullback–Leibler (KL) divergence is a metric for how similar two probability distribu-

tions are. A standard formulation is the following. Given two probability distributions P

and Q with probability functions p(·) and q(·) respectively, the KL divergence is the integral

DKL[P‖Q] =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx. (2.113)

There are many ways to interpret the KL divergence. I’ll present just one; the KL divergence

can be viewed as a measure of relative information entropy between two distributions. Let’s

rewrite Equation (2.113) in terms of entropy H(·) and cross-entropy H(·, ·):

DKL[P‖Q] =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx

= Ep(x)

[
log

(
p(x)

q(x)

)]
= Ep(x) [log p(x)− log q(x)]

= Ep(x) [− log q(x)]− Ep(x) [− log p(x)]

= H(P,Q)−H(P ),

(2.114)

As we can see, the KL divergence is the difference between cross-entropy and entropy (see

MacKay [2003] for a discussion of information entropy). In other words, one interpretation of

the KL divergence is that it captures the relative information or relative entropy between two

distributions P and Q. Also note that the KL divergence is not symmetric, i.e. DKL[P‖Q] 6=

DKL[Q‖P ] in general.

2A.3 Variational inference

In Bayesian inference, we are often interested in the posterior distribution PZ|X with proba-

bility function p(Z | X) where X := {x1, . . . ,xN} are observations, and Z := {z1, . . . , zN} are

latent variables. However, in many practical models of interest, this posterior is intractable

because we cannot compute the evidence or denominator of Bayes’ theorem, p(X). This

51



Figure 2A.3.1: Diagram of VI. A family of distributions Q is visualized as a blob. VI starts
with some initial distribution q(0)(Z) ∈ Q and then iteratively minimizes the KL divergence
between the approximating distribution at iteration t, call this q(t)(Z), and the desired
posterior p(Z | X). The goal is to find an optimal distribution q∗(Z) where optimality is
defined as having the smallest possible KL divergence between q∗(Z) and p(Z | X).

evidence is hard to compute because we have introduced latent variables that must now be

marginalized out. Such integrals are often intractable in the sense that (1) we do not have

an analytic expression for them or (2) they are computationally intractable. See Blei et al.

[2017] for examples.

The main idea of variational inference (VI) is to use optimization to find a simpler or

more tractable distribution QZ with probability function q(Z) from a family of distributions

Q such that it is close to the desired posterior distribution p(Z | X) (Figure 2A.3.113). In

VI, we define “close to” using the Kullback–Leibler (KL) divergence. Thus, the desired VI

objective is

q∗(Z) := arg min
q(Z)∈Q

DKL[q(Z)‖p(Z | X)]. (2.115)

Minimizing the KL divergence can be interpreted as minimizing the relative entropy between

the two distributions. See Section 2A.2 for a discussion.

2A.3.1. Evidence-lower bound

The main challenge with the variational inference objective in Equation (2.115) is that

it implicitly depends on the evidence, p(X). Thus, we have not yet gotten around the

intractability discussed above. To see this dependence, let’s write out the definition of the

13I saw a version of this diagram in a talk by David Blei at Princeton University.

52



KL divergence:

DKL[q(Z)‖p(Z|X)] =

∫
q

q(Z) log
q(Z)

p(Z|X)

= Eq(Z)

[
log

q(Z)

p(Z|X)

]
= Eq(Z)[log q(Z)]− Eq(Z)[log p(Z,X)]︸ ︷︷ ︸

−ELBO(q)

+ log p(X).

(2.116)

Because we cannot compute the desired KL divergence, we optimize a different objective

that is equivalent to this KL divergence up to constant. This new objective is called the

evidence lower bound (ELBO):

ELBO(q) := Eq(Z)[log p(Z,X)]− Eq(Z)[log q(Z)]. (2.117)

This is a negation of the left two terms in Equation (2.116). We can rewrite Equation (2.116)

as

log p(X) = ELBO(q) +DKL[q(Z)‖p(Z|X)]. (2.118)

Why is the ELBO so-named? Since the KL divergence is non-negative, we know

log p(X) ≥ ELBO(q). (2.119)

In other words, the log evidence log p(X), a fixed quantity for any set of observations X,

cannot be less than the ELBO. So if we maximize the ELBO, we minimize the desired KL

divergence. This is VI in a nutshell.

2A.3.2. Relationship to EM

It’s fun to observe the relationship between VI and EM discussed in Section 2.2.1. EM

maximizes the expected log likelihood when q(Z) = p(Z|X), i.e.

log p(X) =

EM maximizes this︷ ︸︸ ︷
ELBO(q) +

Since this is zero︷ ︸︸ ︷
KL[q(Z)‖p(Z|X)] . (2.120)
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To be a bit more pedantic, at iteration t with current parameters estimates θ(t), EM optimizes

this expected complete log likelihood inside the ELBO:

log p(X | θ) =

EM maximizes this︷ ︸︸ ︷
Ep(Z|X,θ(t)) [log p(X,Z | θ)]−Ep(Z|X,θ(t)) [log p(Z | X)] . (2.121)

See Section 2.2.1 for why EM ignores the right term in Equation (2.121).
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Chapter 3

Deep probabilistic CCA

Probabilistic canonical correlation analysis (P-CCA) [Bach and Jordan, 2005] is a multi-

variate statistical method that assumes two paired observations are generated from a single

shared latent variable. This probabilistic model is a reformulation of classic CCA [Hotelling,

1936], which finds linear projections of two data sets such that projected data pairs (paired

latent variables) are maximally correlated. In this first chapter, I present an end-to-end

inference framework for deep probabilistic CCA (DP-CCA). The goal of DP-CCA is to infer

shared structure in a way that drives the representation learning of neural networks.

DP-CCA was motivated by an important problem in computational biology. Medical

pathology images are visually evaluated by experts for disease diagnosis, but the connection

between image features and the state of the cells in an image is typically unknown. To

understand this relationship, we developed DP-CCA to estimate the shared latent structure

of joint gene expression levels and medical image features. The challenge was to leverage

the powerful representation learning of models such as convolutional neural networks with

more mathematically well-understood methods such as P-CCA. Thus, DP-CCA is trained

end-to-end so that the P-CCA and neural network parameters are estimated simultaneously.

I demonstrate the utility of this method in constructing image features that are predictive

of gene expression levels on simulated data and the Genotype-Tissue Expression data, and

demonstrate that the latent variables are interpretable by disentangling the latent subspace

through shared and modality-specific views.
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Figure 3.1.1: A paired GTEx sample consists of a whole tissue slide (cropped) along with
gene expression levels from the same tissue and donor.

3.1 Introduction

Many diseases are diagnosed by pathologists using morphological features in tissue imag-

ing data. But the genes that capture the internal state of cells and that are associated

with a specific tissue morphology are typically unknown and hard to assay in a particular

sample. The Genotype-Tissue Expression (GTEx) Consortium [Consortium et al., 2017,

Carithers et al., 2015] has collected data from over 948 autopsy subjects (donors), including

standardized whole tissue histology slides, giving us images of each sample, and bulk RNA-

sequencing, giving us gene expression levels for each sample, from approximately 50 different

human tissues (Figure 3.1.1). These multi-subject, multi-view data provide an opportunity

to develop computational tools that capture the relationship between cell state (observable

in gene expression data) and morphological features (observable in histology images).

Historically, modeling data across two views with the goal of extracting shared signal has

been performed by some version of canonical correlation analysis (CCA) [Hotelling, 1936].

Given two random vectors, CCA aims to find two linear projections into a shared latent space

for which the projected vectors are maximally correlated. Probabilistic CCA (P-CCA) is

particularly attractive for medical applications with small sample sizes. (See Ghahramani

[2015] or Section 2.1 for a discussion of the value of probabilistic modeling in low-data

scenarios.)

In its most general form, P-CCA will ignore possibly important nonlinear structure in

data such as images; this nonlinear structure could be extracted first with computer vision

techniques such as convolutional neural networks [LeCun et al., 1998] that have achieved
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excellent performance on medical imaging tasks [Bar et al., 2015, Shah et al., 2017, Esteva

et al., 2017, Geras et al., 2017, Gulshan et al., 2016]. (See Section 3A.5 for a detailed

introduction to the convolution operator and convolutional neural networks.) To this end,

two recent studies trained models in a two-stage approach, first embedding the imaging

data using convolutional models and then fitting CCA to the lower-dimensional embedded

data [Ash et al., 2021, Subramanian et al., 2018]. Another two-stage approach computed

the principal components of single views and then computed cross-view correlations [Barry

et al., 2018], while Cooper et al. [2012] first clustered image features and then looked for

genomic associations. However, two-stage approaches decouple the image feature learning

from estimating the shared latent subspace of the data views, leading to image features that

capture minimal variation in the shared subspace, and projections of the two views that are

difficult to interpret. While “interpretability” is a broad concept [Lipton, 2016], here we

mean specifically that we can identify small subsets of correlated features across modalities,

here, gene expression levels representing cell state that are associated with specific image

features.

To address these challenges, we propose a multimodal modeling and inference framework,

deep probabilistic CCA (DP-CCA). DP-CCA estimates end-to-end the nonlinear embeddings

and shared latent structure of paired high-dimensional data sets—here, histology images

and paired gene expression data. Our model is probabilistic in that it is generative and

models parameter uncertainty, interpretable in that it uses sparse P-CCA to associate sets

of genes with image features, and nonlinear in that it learns convolutional features for high-

dimensional observations. Our training procedure makes use of automatic differentiation

of a single loss function; this avoids the difficulties of implementing joint inference over

probabilistic models and neural networks via conjugacy and message passing [Johnson et al.,

2016, Lin et al., 2018].

The impact of solving these challenges is twofold. First, our DP-CCA model will include

latent factors capturing shared variation across the paired data modalities but also latent

factors that capture modality-specific variation; our end-to-end inference will substantially

increase the shared variation captured in the latent space by identifying embeddings for each

data view that maximize the shared variation. Second, this generative framework allows
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cross-mode imputation: given a fitted model, we can guess at the values of gene expression

data for a held-out histology image, for example. This is particularly important given a

discrepancy in cost between the two data modalities, since it is much more expensive to

assay gene expression in a tissue sample than to stain and image that sample.

We illustrate the behavior of our method for simultaneous embedding and latent space

modeling of multiple data modalities on both the MNIST data [LeCun et al., 2010], where

we paired Gaussian-distributed vectors with specific digits, and on the GTEx v6 data. We

compare the results from our approach against results from related multimodal approaches

in order to illustrate the additional gains in the variation captured in the shared latent space

and also the interpretability of the end-to-end inference of embeddings and shared space.

We validate these results in the GTEx v6 data using additional held out biological data that

correlate with signal identified in the inferred latent space. We conclude with thoughts on

further improvements to our model.

Contributions: The fundamental contributions of DP-CCA to the field of simultaneous

embedding and joint modeling of high-dimensional multimodal data include addressing three

main methodological and domain-specific challenges. First, in our end-to-end training pro-

cedure, the shared latent subspace drives the convolutional image embeddings. Compared

with a standard autoencoder that learns embeddings that minimize a reconstruction loss,

the P-CCA backend encourages image embeddings that maximally explain variation in the

other data modalities. Second, the shared and modality-specific latent variables provide

three views into variation that can be mined for domain-specific patterns of interest, making

our model interpretable with respect to the data domain. Finally, the shared latent vari-

ables represent a composite phenotype between tissue morphology and gene expression—sets

of genes representing cell state and image features that covary together. These composite

phenotypes can be used for many downstream tasks, including identifying paired pheno-

typic differences between sick and healthy patients and testing for associations with other

modalities, such as genotype.
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3.2 Background

The original realization of CCA was more recently reframed as a probabilistic model. This

model is known as inter-battery factor analysis in the statistics community [Tucker, 1958,

Browne, 1979] and was re-derived as probabilistic CCA [Bach and Jordan, 2005] in the

machine learning community. An important feature of P-CCA is the allowance for view-

specific noise. If P-CCA assumed independent noise, that would mean that any view-specific

variation in the data would have to be modeled as shared variation. The model would have

no other way of explaining that variance given that it assumes noise is independent.

CCA has also been extended to nonlinear settings using kernel methods [Akaho, 2006,

Hardoon et al., 2004]. Variants of combining CCA with neural networks also exist. Deep

CCA (DCCA) estimates linear projections on the outputs of neural networks [Andrew et al.,

2013]. Deep variational CCA (DVCCA) is a variational approximation of CCA using a single

encoder, while we learn pairs of embeddings with view-specific encoders [Wang et al., 2016].

While DCCA learns embeddings that capture shared structure, it does not explicitly model

view-specific noise as in P-CCA. We demonstrate that this is an important benefit of our

model in Section 3.4. Furthermore, learning linear maps as in CCA and P-CCA is key to

the interpretation of covarying data features from a given latent variable.

Deep multimodal learning without the notion of correlation maximization is another

related body of work [Ngiam et al., 2011]. However, a multimodal autoencoder that learns

a shared lower-dimensional representation explicitly optimizes a reconstruction loss, but it

does not disentangle the latent space across views, which is an essential component of our

model. Another related model worth mentioning is oi-VAE [Ainsworth et al., 2018], which

uses multiple decoders over the same latent variables, with the goal of having interpretable

factors of the same data view, not accounting for multiple views.

We note that our domain-specific problem is related to other domains such as image

captioning in computer vision and neural machine translation in natural language processing.

A major distinction in language-based modeling is that they cannot make the same Gaussian

assumptions about their data.
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Table 3.2.1: We preprocessed the GTEx v6 data to only include samples from which 1000×
1000 pixels crops could be taken and that had both tissue slides and gene expression levels.
After preprocessing, we obtained 2221 paired samples from 29 tissue types. The data are
both small and class-imbalanced.

Tissue Count Tissue Count

Adipose Tissue 5 Nerve 9
Adrenal Gland 134 Ovary 88

Bladder 4 Pancreas 166
Blood Vessel 47 Pituitary 51

Brain 172 Prostate 53
Breast 5 Salivary Gland 10

Cervix Uteri 7 Skin 28
Colon 81 Small Intestine 59

Esophagus 134 Spleen 103
Fallopian Tube 4 Stomach 106

Heart 188 Testis 44
Kidney 12 Thyroid 65
Liver 115 Uterus 69
Lung 76 Vagina 17

Muscle 369 TOTAL 2221

3.2.1. Problem setup

We index N paired samples using n ∈ {1, 2, . . . , N}, and we index two data views a and

b using j ∈ {a, b}. The nth paired sample is a tuple (xan,x
b
n). Here, an image xan is a

multidimensional array with dimensions for the number of channels, image height, and image

width; for ease of notation we can flatten this multidimensional array into a vector with

dimensionality RQa . A gene expression sample xbn is a RQb-vector for Qb genes. We embed

each data view before performing P-CCA, and we refer to these view-specific embeddings

as P a- and P b-dimensional vectors ya and yb. Here we use a convolutional autoencoder for

the image vector and a linear embedding for the gene expression vector. Each paired sample

comes from a single donor and one of 29 human tissues after preprocessing (Table 3.2.1).

The sample tissue labels are held out to be used as biological signal to validate the model,

which we explore in Section 3.4.
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Figure 3.2.1: Diagram of canonical correlation analysis. Let N = 2 be the number of
observations. Two data sets Ya ∈ RN×3 and Yb ∈ RN×2 are transformed by projections
Ha ∈ R3×2 and Hb ∈ R2×2 such that the paired embeddings, (va,vb) and ua,ub), are
maximally correlated with unit length in the projected space.

3.2.2. Canonical correlation analysis

Canonical correlation analysis (CCA) is a multivariate statistical method for finding two

linear projections, one for each set of observations in a paired data set, such that the projected

pairs are maximally correlated. Provided the data are mean-centered, this procedure can

be visualized fairly easily (Figure 3.2.1). CCA finds linear projections such that paired data

points are close to each other in a lower-dimensional space. And since mean-centered points

are vectors with tails at the origin 0, CCA can be thought of as minimizing the cosine

distance between paired points.

To formalize this, consider two paired data sets, Ya ∈ RN×Pa and Yb ∈ RN×P b . By

“paired”, we mean that the nth sample consist of two row vectors,
(
yan,y

b
n

)
, with dimension-

ality P a and P b respectively. Thus, there are N paired empirical multivariate observations.

We assume the data are mean-centered.

Let ha and hb denote linear transformations of the data, P a- and P b-vectors respectively.

These are vectors in the matrices in Figure 3.2.1. A pair of canonical variables za ∈ RN and
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zb ∈ RN are the images of Ya and Yb after projection, i.e.:

za = Yaha zb = Ybhb. (3.1)

The goal of CCA is to learn ha and hb such that this pair of canonical variables are maximally

correlated. Let Σij denote the covariance matrix between data sets Yi and Yj for i, j ∈

{a, b}. Then the CCA objective is

(ha)?, (hb)? = argmax
ha,hb

corr(Yaha,Ybhb)

= argmax
ha,hb

(ha)>Σabhb√
(ha)>Σaaha

√
(hb)>Σbbhb

,

s.t. ‖za‖2 = 1,
∥∥zb∥∥

2
= 1.

(3.2)

Alternatively, since

(hi)>Σijhj = (hi)>
(

1

N − 1
(Yi)>Yj

)
hj

=
1

N − 1
(Yihi)>Yjhj

=
1

N − 1
(zi)>zj,

(3.3)

we can rewrite the objective as finding the minimum angle θ between the two canonical

variables za and zb,

max
za,zb

cos θ︷ ︸︸ ︷
(za)>zb√

(za)>za
√

(zb)>zb
= max

za,zb
(za)>zb. (3.4)

This second formulation has a nice geometric interpretation. We want projections such that

our embedded data are vectors pointing in the same direction in lower-dimensional space,

i.e., are near each other (Figure 3.2.1).

This CCA objective in Equation (3.2) applies to the first pair of canonical variables. If

we would like to find a second pair, an additional constraint is that these must be orthogonal

to the first pair. In general, for the ith and jth pair of canonical variables, we must have:

(zai )
> zaj = 0,

(
zbi
)>

zbj = 0. (3.5)
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Finally, the number of pairs of canonical variables, call this R, cannot be greater than the

minimum of P a and P b:

R := min(P a, P b). (3.6)

Putting this objective and the constraints in one place, we have

(za)? ,
(
zb
)?

= argmax
za,zb

{
(za)> zb

}
,

‖za‖2 =
√

(ha)>Σaaha = 1,
∥∥zb∥∥

2
=
√

(hb)>Σbbhb = 1,

(zai )
> zaj = 0,

(
zbi
)>

zbj = 0, ∀j 6= i : i, j ∈ {1, 2, . . . , R}.

(3.7)

With this notation, we define the goal of CCA as finding R linear projections, (har ,h
a
r) for

r ∈ {1, 2, . . . , R}, that satisfy the above constraints. If we pack these vectors into a matrix,

we get the matrices Ha ∈ RPa×N and Hb ∈ RP b×N .

The solution to this optimization problem can be found analytically by solving the stan-

dard eigenvalue problem [Hotelling, 1936, Hardoon et al., 2004]. The geometric interpreta-

tion is that we estimate two linear maps that project both views into a shared subspace.

See Section 3A.1 for a discussion of how to solve for the canonical variables in this objective.

3.2.3. Probabilistic CCA

A probabilistic interpretation of CCA (P-CCA) extends these ideas to a model that shares

properties with factor analysis and PCA. P-CCA as proposed by Bach and Jordan [2005]

can be written as

zn
iid∼ N (0, I),

yan ∼ N (Wazn,Ψ
a),

ybn ∼ N (Wbzn,Ψ
b),

(3.8)

where Ψa and Ψb are full-rank matrices. This property is important because it allows for P-

CCA to model variation that is not shared, i.e. view-specific variation. A different represen-

tation of this same model is sometimes called inter-battery factor analysis (IBFA) [Browne,
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1979]:

zcn
iid∼ N (0, I),

zan, z
b
n

iid∼ N (0, I),

yan ∼ N (Λazcn + Bazan,Ψ
a),

ybn ∼ N (Λbzcn + Bbzbn,Ψ
b),

(3.9)

where now Ψj := (σj)2I and where Λj ∈ RP j×K , Bj ∈ RP j×K , and Ψj ∈ RP j×P j . Note that

we have isotropic noise, and therefore the view-specific latent variables zan and zbn account for

view-specific variation. The shared latent variable zcn captures shared variation (covariation)

across the two views.

Note that P-CCA can be viewed as factor analysis with appropriately tiled data and

parameters,

y =

ya

yb

 z =


zc

za

zb


Λ =

Λa Ba 0

Λb 0 Bb

 Ψ =

Ψa 0

0 Ψb

 ,
(3.10)

This immediately suggests EM for inference in P-CCA, using the EM parameter updates for

factor analysis given the above tiling [Ghahramani et al., 1996]:

Λ? =
∑
n

(
ynEz|yn [z | yn]>

) (
Ez|yn

[
zz> | yn

])−1

Ψ? =
∑
i

1

N
diag

(
yny

>
n −Λ?Ez|yn [z | yn] y>n

)
.

(3.11)

See Section 3A.3 for detailed derivations for EM for Equation (3.8). In this framing, y ∈ RP

where P := P a +P b and z ∈ RK where K := Kc +Ka +Kb, the dimensions of zc, za, and zb

respectively. Thus, y ∈ RP , Λ ∈ RP×K , and Ψ ∈ RP×P . In contrast to CCA, P-CCA does

not constrain the latent variables to be orthonormal. See Section 3A.2 for further discussion.
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Figure 3.3.1: The input is a paired set of histology images and gene expression levels. The
model is trained by fitting P-CCA to embeddings from convolutional (images) and linear
(gene expression) autoencoders (gray). Then we sample from the P-CCA model using the
reparameterization trick (ε ∼ p(ε) is in yellow), and then we backpropagate through the
model using the reconstruction loss. The model learns shared and modality-specific latent
variables (blue). Sparsity is induced on the P-CCA parameters for the gene expression levels
(red box).

3.3 End-to-end training of DP-CCA

DP-CCA is a deep generative model that fits P-CCA to the embeddings of two autoen-

coders. Additionally, the model has an `1 penalty on the P-CCA gene weights (Λb and Bb

in Equation (3.9)) to encourage sparsity in the factors for the gene expression levels. The

DP-CCA model is trained end-to-end with backpropogation through the reconstruction loss

(Figure 3.3.1). (See Section 3A.4 for a discussion of the backpropagation algorithm [Rumel-

hart et al., 1986].)

In detail, given a paired sample (xan,x
b
n), each encoder Ej(·) with parameters Wj

e em-

beds its respective views into a vector, yjn ∈ RP j . Each embedding is view-specific: here

we use a convolutional encoder for the images and a linear projection for the genes. The

embedded vectors yan and ybn are then fit by P-CCA using the parameter updates in Equa-

tion (3.11) with a sparsity-inducing prior on the gene-specific parameters. This results in

shared and view-specific latent variables zn =
[
zcn zan zbn

]>
. Embedded samples ŷjn are ob-

tained from the generative process of the model through sampling from the low-dimensional

P-CCA representation ŷjn ∼ N (Λj?zcn + Bj?zjn; Ψj?) using the reparameterization trick sim-

ilar to Kingma and Welling [2013]. This reparameterization is needed so that the Monte

Carlo estimate of the expectation is differentiable with respect to the encoders’ parameters
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Algorithm 2: End-to-end training of DP-CCA

1: Initialize P-CCA parameters, image encoder and decoder parameters, and gene encoder
and decoder parameters (Λ, Ψ, Wa

e , Wa
d, Wb

e, Wb
d).

2: while epoch < # epochs do
3: For M paired samples, B = {(xam,xbm)}Mm=1.
4: for (xa,xb) ∈ B do
5: Encode the jth view as Ej(xj)→ yj.
6: Compute Λ? and Ψ? using Equation (3.11).
7: Sample ŷj ∼ N (Λj?zc + Bj?zj; Ψ?

j) using the reparameterization trick.
8: Decode the jth view as Dj(ŷj)→ x̂j.
9: end for

10: Compute loss (Equation (3.13)) and backpropagate to compute ∇LΘ.
11: end while

(see Section 3A.6 for a discussion).

Each sampled P-CCA embedding ŷan and ŷbn is then decoded into reconstructions x̂an and

x̂bn using view-specific decoders with parameters Wj
d (Figure 3.3.1). Finally, let L be the

reconstruction loss and Θ be both the P-CCA and neural network parameters, or

Θ = {Λ,Ψ} ∪ {Wj
e,W

j
d}j∈{a,b}. (3.12)

To estimate the parameters Θ, we perform stochastic gradient descent, where the gradient

at each step is ∇ΘL with

L =
1

N

N∑
n=1

(
‖x̂an − xan‖2

2 + ‖x̂bn − xbn‖2
2

)
+ γ

(
‖Λb‖1 + ‖Λbc‖1

)
. (3.13)

The hyperparameter γ is the `1 coefficient. This procedure is summarized in Algorithm 2.

3.4 Experiments

In this section, we explore the strengths of our model in two settings: an expanded version of

the MNIST handwritten digit data [LeCun et al., 2010], and the GTEx v6 data [Consortium

et al., 2017, Carithers et al., 2015] that includes publicly available paired histology images

and gene expression data. We implemented our model in PyTorch [Paszke et al., 2017] and
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Figure 3.4.1: Multimodal MNIST: Each image from one of three classes (0, 1, 2) is paired
with a continuous random variable (pseudogene) drawn from one of two multivariate normal
distributions with separate means and separate diagonal covariance matrices. Digits of 0s
and 1s are paired with samples from the first distribution. Digits of 2s are paired with
samples from the second distribution.

Table 3.4.1: Baseline experiments comparing an image-only autoencoder (AE), a multimodal
autoencoder (MAE), P-CCA, and DP-CCA on image and pseudogene reconstructions of
multimodal MNIST. Each error is an average of five independent trials; standard deviations
are shown parenthetically. Our method performs comparably to an MAE and outperforms
P-CCA at reconstructing both views.

Image MSE Pseudogene MSE

Image AE 0.0196 (0.0019) NA
MAE 0.0435 (0.0015) 2.287 (0.0117)

P-CCA 0.1207 (0.0032) 33.749 (0.648)
DP-CCA 0.0518 (0.0121) 2.3098 (0.0137)

used the Adam optimizer for all experiments [Kingma and Ba, 2014]. Our code is available

online1 to encourage more work in this important area.

3.4.1. Baselines and multimodal MNIST

We first wanted to study the performance of our model, and compare our results with results

from related work using a simple data set. To do this, we built a multimodal MNIST data set

using the MNIST handwritten digits. MNIST consists of 60,000 training and 10,000 testing

images, each with 28 × 28 pixels with values ranging between 0 (black) and 255 (white).

The images are handwritten digits between 0 and 9 and have corresponding class labels in

{0, 1, . . . 9}.

We augmented MNIST in the following way2. First, we removed all images with labels not

1https://github.com/gwgundersen/dpcca
2See data/mnist/generate.py in the repository.
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Figure 3.4.2: Two-dimensional embeddings from models trained on multimodal MNIST.
(Top row) Embeddings from an autoencoder (left) and multimodal autoencoder (right).
(Bottom row) The shared (left), image-specific (center), and gene-specific (right) embeddings
from DP-CCA.

in [0− 2]. For each remaining image, we created an associated pseudogene expression vector

by sampling from one of two multivariate normal distributions, depending on the image

label. The distributions had separate means and separate diagonal covariance matrices. If

the image was a 0 or 1, we sampled from the first distribution. If the image was a 2, we

sampled from the second distribution (Figure 3.4.1).

Our model should ideally be able to reconstruct both modalities using the latent variables,

including the modality-specific variation and the shared variation. We can also examine Z

to ensure that it captures the shared information we encoded in the data: namely, the

relationship between the (0,1) images and the 2 images with their respective multivariate

normal distributions rather than image digit label, which, for (0,1), are not distinguished by

pseudogenes.

As baselines, we fit a single-view autoenoder (AE) on just images, a multimodal au-

toencoder (MAE) on both data views, and standard P-CCA to both data views. We found

that DP-CCA can reconstruct both modalities well relative to these baselines (Table 3.4.1).

The AE and MAE are better than DP-CCA at reconstruction, which is expected since our

method also must optimize P-CCA in an inner loop. Standard P-CCA performs worse in
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reconstructing both views. However, neither the MAE nor the AE incorporate both shared

and view-specific latent variables, which is crucial to the interpretability of our framework.

Second, we found that the shared and view-specific latent variables contained appropri-

ate shared and view-specific information. To illustrate this, we compared the latent space

of DP-CCA to the embeddings of the single-view AE and an MAE (Figure 3.4.2, top). In

this experiment, we set K, the dimensionality of the embeddings, to 2 because we have

empirically found that the AE with two-dimensional embeddings can reconstruct MNIST

well. Recall that, in our model, z =
[
zc za zb

]>
. DP-CCA’s shared latent variables zc

primarily capture the relationship between the two views rather than distinguishing between

digits (Figure 3.4.2, bottom left). For comparison, the AE trained on images alone distin-

guishes digit label, while the MAE captures the shared view without distinguishing 0s and

1s (Figure 3.4.2, top).

We compared the shared and view-specific latent variables of our model to understand

the signal captured by each set. The shared latent variables do not distinguish digits 0 and

1 but instead distinguish 0s and 1s versus 2s (Figure 3.4.2, top right). The image-specific

latent variables capture information that distinguishes the three digits; this makes sense

since the MNIST images are digits (Figure 3.4.2, bottom center). This view is similar to the

image-only AE. The pseudogene-specific latent variables, like the shared latent variables, do

not distinguish 0s and 1s because the pseudogene variables corresponding to both 0s and 1s

are drawn from the same distribution (Figure 3.4.2, bottom right). These results suggest

that DP-CCA can estimate embeddings that maximize the correlation of the two views,

and that together these shared and view-specific embeddings capture meaningful signals and

information contained in held-out class labels better than autoencoders alone.

3.4.2. GTEx data

In experiments on the GTEx data [Consortium et al., 2017, Carithers et al., 2015], we

wanted to show that our model can be applied to these data, that it captures interesting

held-out biological information such as tissue type, and that the shared latent variables

model variation in both images and gene expression levels. To show this, we analyzed the

latent factors of our model—a “factor” being a row vector of Z ∈ RK′×n where K ′ may be K,
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Figure 3.4.3: (Top.) Examples of original data (top row) and reconstructions (bottom row)
of gene expression covariance matrices (left) and histology slides (right). For clarity, we show
the top 10 columns with the highest variance in the original data. (Bottom.) (Top) View-
specific test error over training on the test data from the GTEx data. (Bottom) Negative
log likelihood (Test NLL) of DP-CCA over training on the test data from the GTEx data.

Kc, Ka, or Kb depending on context—and found tissue-specific information and variation in

images that covaries with changes in factor value. We used held-out genotypes known to be

associated with specific genes to identify genotypes associated with tissue morphology using

the shared factors. While these results are preliminary from a biological perspective, they

are evidence that our model may be a useful tool for joint analysis of paired data.

To this end, we trained our model on 2221 samples from the GTEx v6 study. Each

whole tissue slide was subsampled once down to a 1000×1000 pixel RGB image. The crops

were chosen as follows. A slide was scanned for tiles in which the mean gray values of the

tile and its neighboring tiles were darker than 180 out of 255. The final crop was chosen

uniformly at random from suitable tiles. To augment the data, the model was trained on

128×128 pixel crops with random rotations and reflections. The image autoencoder is based

on the DCGAN architecture [Radford et al., 2015], and the gene autoencoder is two linear

layers. The gene expression measurements are approximately 18,000-dimensional real-valued
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Figure 3.4.4: Analyzing a latent factor. (Top) Given a single N -dimensional latent factor
(left), we sort the samples or columns by tissue type (middle) and then plot the value of
the factor for each sample. (Bottom) Given a single N -dimensional latent factor (left), we
sort the samples based on the factor’s value (middle). Then we visualize each sample by its
associated histology slide in the same order as the sorted factors.

vectors [Hubbard et al., 2002]. For the number of latent variables for each of the three latent

variables types, we swept over values in {2, 10, 20, 50, 100, 500} and used the smallest number,

10, that resulted in high-quality image and gene reconstructions. Thus, Kc = Ka = Kb = 10

and K = 30.

Before using our model for biomedical data analysis, we wanted to verify two important

properties. First, we wanted to show that our model could reconstruct both data modalities

from a shared latent variable. To show this, we saved reconstructions of the images and

reconstructions of the gene covariance matrices during training. We found that our model

was able to reconstruct both modalities (Figure 3.4.3, top) and that the test error for both

views decreases throughout training (Figure 3.4.3, bottom). This suggests that the shared

latent variables carry sufficient information to recapitulate both views.

Second, we wanted to verify our end-to-end training procedure. With a model composed

of both neural networks and P-CCA, we might ask whether one of the sub-models is ig-

nored due to an imbalance in the numbers of parameters. To test this, we computed the

expected complete negative log-likelihood of held-out test data and found that it decreased

over training (Figure 3.4.3, bottom). Taken together, these results suggest that the neural

networks and P-CCA are jointly learning parameters for embedding and reconstructing data

from nonlinear observations while minimizing the negative log-likelihood of the generative
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model.

3.4.3. Tissue-specific associations

Next, we wanted to see if our latent factors captured meaningful, held-out biological informa-

tion: the tissue type of the sample. We did this by sorting the samples (latent variables) by

tissue type and plotting the value of a latent factor for each sample (Figure 3.4.4, top). We

found that the model’s latent factor capture tissue-specific information, and quantified this

using a one-sample two-sided t-test (Figure 3.4.5, top). This measures the extent to which

the different subsets of the latent variable’s factors pull out tissue-specific information.

Our analysis demonstrates that tissue-specific structure is shared across images and genes,

and is captured both in the shared factors and also in the gene-specific factors, but less so

in the image specific factors. We hypothesize that the tissue-specific signal in images is

captured in the shared latent space, which is why no tissue-specific signal is observed in the

image-specific latent space. Put differently, there is no tissue-specific variation in the images

that is not shared in the genes. Biologically, this makes sense.

3.4.4. Image-specific variation

Next, we wanted to see if DP-CCA captures interpretable morphological information about

the images. We did this by visualizing the image associated with each sample after sorting

by a single latent factor (Figure 3.4.4, bottom). We found that our model’s latent factors

capture variations in images that are visible to the human eye (Figure 3.4.5, bottom). In

some cases, this variation is a feature of the image itself. For example, cropped images with

black chunks are toward one end of the spectrum. But in other cases, this variation is related

to tissue morphology. For example, more striated muscle tissue and cerebellar granule cells

are both captured by the factor value.

3.4.5. Downstream analysis: Image QTLs

The shared latent variables from our method can be integrated into established genomics

pipelines such as quantitative trait loci (QTL) mapping. A cornerstone of quantitative ge-
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Figure 3.4.5: (Top) Analysis of shared (top row), image-specific (middle row), and gene-
specific (bottom row) latent factors. The x-axis (samples) is sorted by tissue type and the
y-axis is factor value. We performed a one-sample two-sided t-test on the latent factor
values for all samples of the same tissue type. We applied Bonferroni correction to a p-
value threshold of 0.05. Tissue samples that reject the null hypothesis are marked with
diamonds. We ranked the significant p-values and then uniformly partitioned them from
most (3 diamonds) to least (1 diamond) significant. (Bottom) Visualization of the variation
in the latent factors. The x-axis (samples) is sorted by factor value, and the images associated
with the five most extreme positive and negative values are shown for three tissues.

nomic analysis [Consortium et al., 2017], this method aims to identify associations between

genetic variants (genotypes) and quantitative human traits such as height, weight, or gene

expression levels (phenotypes), using false discovery rate (FDR)-corrected linear regression
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Table 3.4.2: Top genotypes hypothesized to affect the composite phenotype capturing gene
expression and morphology across different tissues.

Tissue SNP P-value FDR

Adrenal Gland chr10 5330574 G T b38 3.49E-10 2.40E-3
Adrenal Gland chr13 33247934 C T b38 7.56E-10 3.81E-3
Adrenal Gland chr9 18386575 C G b38 1.65E-9 9.57E-3

Brain Cerebellum chr1 14376802 A G b38 1.82E-10 1.83E-3
Brain Cerebellum chr9 133727220 C A b38 4.43E-10 2.57E-3

Colon Sigmoid chr10 49206009 T G b38 2.02E-10 1.37E-3
Colon Sigmoid chr12 82520469 A G b38 2.29E-9 5.30E-3

Esophagus Mucosa chr13 68558539 A T b38 3.45E-10 4.51E-5
Muscle Skeletal chr6 150866897 G A b38 6.14E-11 5.62E-4

Uterus chr11 6991683 G A b38 1.89E-9 6.20E-3

within each tissue. The shared latent factors estimated using DP-CCA constitute a pheno-

type describing how the morphology of cells in a tissue (how cells appear) covaries with gene

expression levels (characterizing cellular state). These resulting composite phenotypes allow

researchers to study the close relationship between a cell’s appearance and a cell’s state at a

macroscopic scale, with the goal of using a cell’s appearance to infer its state at a high resolu-

tion. QTL analysis takes these ideas one step further to query whether population variation,

in the form of differences in genotypes at a particular genetic locus, leads to differences in

cellular morphology or cellular state.

To do this, we performed QTL analysis using linear regression (MatrixEQTL) [Shabalin,

2012] with a Benjamini–Hochberg corrected FDR threshold of 0.05 between the 30 composite

phenotypes and over 400, 000 genomic loci per tissue across 635 individuals. We found over

20, 000 associations (Table 3.4.2). While validating these associations and elucidating the

biological mechanisms behind them is beyond the scope of this work, we note that some of

these associations are recurrent in the biological literature. For example, the genotype on

chromosome 1 at position 14376802 appears to regulate expression levels of the gene KAZN

or Kazrin in cerebellum in the brain. This gene has previously been found to affect changes

in cell shape across various species [Cho et al., 2011].
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3.5 Discussion

In this chapter, we developed a model and associated end-to-end inference method for learn-

ing shared structure in paired samples, specifically, histology images and gene expression

levels. While our framework combines the power of neural networks for nonlinear embed-

dings with probabilistic models for interpretable dimension reduction, inference is gradient-

based and can be implemented using frameworks leveraging automatic differentiation such

as PyTorch [Paszke et al., 2017] and TensorFlow [Abadi et al., 2016].

We demonstrated that the latent factors estimated by DP-CCA revealed tissue-specific

structure, despite withholding tissue labels from the model, as well as view-specific structure

such as color and tissue attenuation for the images. We further validated our results using

QTL analysis.
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3A Appendix

3A.1 CCA objective

There are multiple ways to solve for the projections ha and hb. I will discuss the one proposed

by Hotelling [1936]. This approach frames the problem as a standard eigenvalue problem

and solves for eigenvector vi and eigenvalue λi given a matrix A:

Avi = λivi, (3.14)

or equivalently, solving the characteristic equation

det(A− λiI) = 0 s.t. (A− λiI)vi = 0. (3.15)

We can frame this optimization problem using Lagrange multipliers:

L =

Optimize︷ ︸︸ ︷
(ha)>Σabhb−

Constraint︷ ︸︸ ︷
ρ1

2
((ha)>Σaaha − 1)−

Constraint︷ ︸︸ ︷
ρ2

2
((hb)>Σbbhb − 1), (3.16)

where ρ1 and ρ2 are the Lagrange multipliers, which we divide by 2 to make taking the

derivative easier. Taking the derivative of the loss with respect to ha, we get:

∂L
∂ha

=
∂

∂ha
[
(ha)>Σabhb

]
− ∂

∂ha

[ρ1

2
((ha)>Σaaha − 1)

]
− ∂

∂ha

[ρ2

2
((hb)>Σbbhb − 1)

] (3.17)
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Let’s solve each term separately, and then apply the linearity of differentiation:

∂

∂ha
(
(ha)>Σabhb

)
= Σabhb,

∂

∂ha

(ρ1

2
((ha)>Σaaha − 1)

)
= ρ1Σ

aaha,

∂

∂ha

(ρ2

2
((hb)>Σbbhb − 1)

)
= 0.

(3.18)

Putting it all together, we get:

∂L
∂ha

= Σabhb − ρ1Σ
aaha = 0. (3.19)

It’s straightforward to see that the derivative w.r.t. hb is

∂L
∂hb

= Σbaha − ρ2Σ
bbhb = 0. (3.20)

Now, note that the Lagrange multipliers ρ1 and ρ2 are the same. If we multiply Equa-

tion (3.19) by (ha)>, we get:

(ha)>
(
Σabhb − ρ1Σ

aaha
)

= (ha)>Σabhb − ρ1 (ha)>Σaaha︸ ︷︷ ︸
‖za‖2=1

. (3.21)

The same logic applies if we multiply hb by Equation (3.20). Putting these two equations

together, we get:

0 = (ha)>Σabhb − ρ1,

0 = (hb)>Σbaha − ρ2,

⇓

ρ1 = ρ2.

(3.22)

So clearly ρ1 = ρ2. Define ρ := ρ1 = ρ2. Now we have two equations, Equation (3.19) and

Equation (3.20), and three unknowns, ha and hb and ρ. Let’s solve for ha in Equation (3.19)
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and then substitute it into Equation (3.20). First, solving for ha:

0 = Σabhb − ρΣaaha

ha =
(Σaa)−1Σabhb

ρ

(3.23)

Next, substituting ha into Equation (3.20) so we have one equation and two unknowns:

0 = Σbaha − ρΣbbhb

= Σba

(
(Σaa)−1Σabhb

ρ

)
− ρΣbbhb

ρΣbbhb = Σba

(
(Σaa)−1Σabhb

ρ

)
ρ2Σbbhb = Σba(Σaa)−1Σabhb

(3.24)

The standard eigenvalue method assumes Σbb is invertible, which should hold since Σbb is a

covariance matrix, and we have:

ρ2Σbbhb = Σba(Σaa)−1Σabhb,

ρ2hb =
(
(Σbb)−1Σba(Σaa)−1Σab

)
hb.

(3.25)

We can see that this is the standard eigenvalue problem where

λ := ρ2,

A := (Σbb)−1Σba(Σaa)−1Σab,
(3.26)

which implies that hb is an eigenvector that satisfies this equation:

(
(Σbb)−1Σba(Σaa)−1Σab − ρ2I

)
hb = 0. (3.27)

We can solve for ha using Equation (3.23) after solving for hb.
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3A.2 CCA versus P-CCA

It is worth thinking about how the properties of CCA are converted to probabilistic assump-

tions in P-CCA. First, in CCA, za and zb are a pair of embeddings that we correlate. The

assumption is that both data sets have similar low-rank approximations. In P-CCA, this

property is modeled by having a shared latent variable z or zc.

Furthermore, in CCA, we require the canonical variables to be orthogonal. In P-CCA,

there is no such orthogonality constraint. Instead, we assume the latent variables are inde-

pendent with an isotropic covariance matrix, z
iid∼ N (0, I). This independence assumption is

the probabilistic analog to orthogonality.

The final constraint of the CCA objective is that the vectors have unit length. In prob-

abilistic terms, this is analogous to unit variance.

3A.3 EM for linear–Gaussian models

In this section, I show how the EM updates (see Section 2.2.1) for factor analysis (Sec-

tion 2.2.2) are related to the EM updates for probabilistic PCA [Tipping and Bishop, 1999]

and probabilistic CCA [Bach and Jordan, 2005].

3A.3.1. EM for probabilistic PCA

The generative model for probabilistic PCA is

yn = Wzn + un,

zn
iid∼ NK(0, I),

un
iid∼ NP (0, σ2I).

(3.28)

The only difference between Equation (3.28) with Equation (2.18) is that the noise covariance

in probabilistic PCA is isotropic. Therefore, the updates for W are exactly the same as in

factor analysis:

W? = YS>A−1. (3.29)
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However, we need a slightly different derivation for σ2, since it is a scalar. In probabilistic

PCA, the expected complete log likelihood is

Q =
N∑
n=1

[
− 1

2σ2
y>n yn +

1

σ2
E[zn]>W>yn −

1

2σ2
tr
(
W>WE[znz

>
n ]
)
− K

2
log σ2

]
. (3.30)

Let’s take the derivative of Q w.r.t. σ2, set it equal to zero, and solve for σ2, using the

optimal value of W:

(σ2)? =
1

NK

N∑
n=1

[
y>n yn − 2E[zn]>[W?]>yn + tr

(
[W?]>W?E[znz

>
n ]
)]

(3.31)

Notice that
N∑
n=1

tr([W?]>W?E[znz
>
n ]) = tr([W?]>W?

N∑
n=1

E[znz
>
n ])

= tr([W?]>W?A)

= tr([W?]>YS>),

(3.32)

and
N∑
n=1

E[zn]>[W?]>yn =
N∑
n=1

tr(ynE[zn]>[W?]>)

= tr

(
N∑
n=1

ynE[zn]>[W?]>

)
= tr([W?]>YS>).

(3.33)

So we can write the optimal value for σ2 as

(σ2)? =
1

NK

N∑
n=1

{
y>n yn − 2E[zn]>[W?]>yn + tr

(
W>[W?]E[znz

>
n ]
)}

=
1

NK

{
tr(XX>)− tr([W?]>YS>)

}
=

1

K
tr

(
Σ̃− Σ̃W

1

σ2
M[W?]>

)
.

(3.34)

This matches the EM updates in Tipping and Bishop [1999].
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3A.3.2. EM for probabilistic CCA

Now we will see that the EM updates for probabilistic CCA are essentially the updates for

factor analysis, with some block structure enforced. The generative model for probabilistic

CCA is

zn
iid∼ NK(0, I), K ≤ min(P a, P b),

yan | zn ∼ NPa(Wazn,Ψ
a),

ybn | zn ∼ NP b(Wbzn,Ψ
b).

(3.35)

Note that in probabilistic CCA, the covariance matrices Ψa and Ψb are not constrained to

be diagonal. If we appropriately tile the data,

yn =

yan

ybn

 , W =

Wa

Wb

 , Ψ =

Ψa 0

0 Ψb

 , Σ̃ =

Σ̃aa Σ̃ab

Σ̃21 Σ̃bb

 , (3.36)

where P := P a +P b, yn ∈ RP , and W ∈ RP×K , then the EM updates for probabilistic CCA

in Bach and Jordan [2005] would be equivalent to those of factor analysis. To see this, the

optimal update for W, again given by our formula for factor analysis in Equation (2.43), is

W? = YS>A−1

= Y(MW>Ψ−1Y)>(NM + SS>)−1

= YY>Ψ−1WM
(
NM + MW>Ψ−1YY>Ψ−1WM

)−1

=
1

N
YY>Ψ−1WM

(
M + MW>Ψ−1 1

N
YY>Ψ−1WM

)−1

= Σ̃Ψ−1WM
(
M + MW>Ψ−1Σ̃Ψ−1WM

)−1

.

(3.37)

In Equation (3.37), we use the fact that (cA)−1 = c−1A−1 for any constant c. This works

because the block structure of Ψ ensures we update each block of W correctly, e.g.:

W>︷ ︸︸ ︷[
(Wa)> (Wb)>

] Ψ︷ ︸︸ ︷Ψa 0

0 Ψb

 =
[
(Wa)>Ψa (Wb)>Ψb

]
. (3.38)
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The update for Ψ is trickier only because we need to maintain the diagonal block structure.

For Ψ?
i with i ∈ {a, b} indexing each data modality, we have:

(Ψi)? = Σ̃ii − Σ̃Ψ−1WMi[W?
i ]
>. (3.39)

In other words, the EM updates for probabilistic CCA immediately fall out of the EM

updates for factor analysis:

W? := Σ̃Ψ−1WM
(
M + MW>Ψ−1Σ̃Ψ−1WM

)−1

,

Ψ? :=

Σ̃aa − Σ̃aa(Ψa)−1WaM1[(Wa)?]> 0

0 Σ̃bb − Σ̃bb(Ψb)−1WbM2[(Wb)?]>

 . (3.40)

How I think of this is that by restricting the off-diagonal block matrices to be all zero, we

enforce our modeling assumption that there is no correlation between the noise terms for

each modality, Ya and Yb.

3A.4 Backpropagation

The goal of backpropagation (backprop) [Rumelhart et al., 1986], a special case of automatic

differentiation [Baydin et al., 2018], is to efficiently compute ∂f/∂θi for every parameter or

weight θi in a function f(·). Here, I’ll assume f(·) is a fully-connected feedforward neural

network, and I’ll assume the reader is familiar with these models. Please see Goodfellow

et al. [2016] if needed. To frame the problem, let’s reason about an arbitrary weight θ1 and

node v somewhere in f(·) (Figure 3A.4.13). The node v refers to the output value of the node

after passing the weighted sum of its inputs [t1, . . . , tn] through an activation function σ(·):

u := θ1t1 + θ2t2 + · · ·+ θntn,

v := σ(u).
(3.41)

3Note that each layer in the neural network has the same width n. This is for ease of notation. It would not
be hard, although it would be notationally clumsier, to present this material with layer-specific widths.
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Figure 3A.4.1: A neural network f(·) with an arbitrary node with inputs [t1, . . . , tn], outputs
[w1, . . . , wp], and activation function σ(·).

Note that in a typical diagram, and indeed for the other nodes in Figure 3A.4.1, u, σ(·),

and v would all be a single node, denoted by the dashed line in Figure 3A.4.1. In my mind,

the most important observation needed to understand backprop is that most of computing

∂f/∂θ1 can be done locally because of the chain rule:

∂f

∂θ1

=
∂f

∂v

∂v

∂u

∂u

∂θ1

. (3.42)

We can compute ∂v/∂u analytically; it just depends on the definition of σ(·). And we know

that ∂u/∂θ1 = t1 (see Equation (3.41)). So at every node v, if we knew ∂f/∂v, we could

compute ∂f/∂θ1. The challenge with computing ∂f/∂v is that downstream nodes depend

on the value of v. Intuitively, we can’t quantify how a change in v results in a change f

without knowing about these downstream interactions (Figure 3A.4.2). As we’ll see, we can

Figure 3A.4.2: Computing the derivative at a single node in a computational graph. The
derivative ∂b/∂a cannot be computed before computing the value of b.

use the multivariable chain rule for this term.

For didactic purposes, let’s first consider backpropagation in a “forward pass”, meaning
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computing the gradient of the function from left-to-right in Figure 3A.4.1. We’ll see that

this is computationally prohibitive.

3A.4.1. Repeated terms

We want a forward propagating algorithm that can compute the partial derivative ∂f/∂θ1

for an arbitrary weight θ1. We showed above that at node v, this is equivalent to:

∂f

∂θ1

=
∂f

∂v

∂v

∂θ1

. (3.43)

In our setup, for every downstream node wi that depends on a node v, it is impossible to

compute ∂wi/∂v at node v. Therefore, in order to compute ∂f/∂v, we must decompose the

term using the multivariable chain rule and pass the other terms needed to compute ∂f/∂θi

forward to each node wi that depends on v:

∂f

∂θi
=

(∑
i

∂f

∂wi

Compute
on wi︷︸︸︷
∂wi
∂v

) Pass
forward︷︸︸︷
∂v

∂θi
. (3.44)

We can see that such an algorithm blows up computationally because we’re forward propa-

gating the same message many times over. For example, if we want to compute ∂f/∂θi and

∂f/∂θk where θi and θk are different weights in the same layer, we need to compute ∂v/∂θi

and ∂v/∂θk separately, but all the other terms are repeated:

∂f

∂θi
=

Repeated terms︷ ︸︸ ︷(∑
j

(∑
k

∂f

∂zk

∂zk
∂wj

)
∂wj
∂v

)
∂v

∂θi
,

∂f

∂θk
=

(∑
j

(∑
k

∂f

∂zk

∂zk
∂wj

)
∂wj
∂v

)
∂v

∂θk
.

(3.45)

I think this the key insight to backprop: if we already had access to downstream terms, for

example ∂wj/∂v, then we could message pass those terms backwards to node v in order to

compute ∂f/∂v. Since each node is just passing its own local term, the backward pass could
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be done in linear time with respect to the number of nodes.

3A.4.2. A backward pass

I hope this explanation clarifies how you might get to backprop from first principles when

trying to compute derivatives in a fully-connected feedforward neural network. On a given

node b that depends on a node a, we simply message pass ∂b/∂a back to a. The multivariable

chain rule helps prove the correctness of backprop. For any node v with downstream weights

wj, if v simply sums the messages that are propagating backwards, then it will compute the

desired derivative:
∂f

∂v
=
∑
j

∂f

∂wj

∂wj
∂v

. (3.46)

Once you understand the main computational problem backprop solves (repeated terms),

I think the standard explanation of backpropagating errors makes much more sense. This

process is can be viewed as a solution to a kind of credit assignment problem: each node

tells its upstream neighbors what they did wrong. But the reason the algorithm works this

way is because a naive, forward propagating solution would have quadratic runtime in the

number of nodes.

3A.5 Convolutional neural networks

In this appendix section, I assume the reader is familiar with neural networks and how

to train them via backpropagation (Section 3A.4). If not, please consult a textbook such

as Goodfellow et al. [2016].

Convolutional neural networks (CNNs) [LeCun et al., 1989] are specialized neural net-

works for detecting visual patterns in images. They are location invariant, recognizing a

detected pattern regardless of its location in the image, and they are robust to small varia-

tions in the detected patterns. They work by automatically learning image kernels or sets

of shared weights for pattern recognition.

To see why we might want a specialized neural network for computer vision, consider a

fully connected neural network with an input of three-channel color images. If each image is
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just 3×100×100 pixels (channels by height by width), then a single neuron in the input layer

would have 30, 000 weights. By making a few biologically plausible, simplifying assumptions,

CNNs dramatically reduce the number of model parameters.

3A.5.1. Convolutions and kernels

As their name suggests, the distinguishing idea behind convolutional neural networks is

the convolution operator, which is related to how image kernels work. I’ll first present

convolutions and kernels and then explain how CNN architectures implement these ideas.

Discrete convolutions in 1-dimension. A convolution is a mathematical operation on

two functions f and g that outputs a function (f ∗ g) that represents how one function

reshapes the other. Since it is sufficient for our purposes, I will only discuss the discrete

convolution operator, but Goodfellow et al. [2016] has a more general discussion. A discrete

convolution between two single-variable functions f and g, denoted with an asterisk (∗), is

defined as:

(f ∗ g)(x) :=
∞∑

i=−∞

f(i) · g(x− i). (3.47)

My intuition is that we are “sliding” the function g across the function f and outputting a

new function in the process.

To see this, let’s work through an example. Imagine that we have a 1-dimensional input

signal with noise,

f =
[
10 9 10 9 10 1 10 9 10 8

]
, (3.48)

visualized in Figure 3A.5.1 (gray curve). The function f is a mapping from a time point (the

zero-based index of the vector) to a signal value. Let the function’s output be zero if it is

otherwise undefined. If we want to smooth this signal to eliminate deviations like f(5) = 1,

then we can define a second function g as

g :=
[
1/3 1/3 1/3

]
, (3.49)

and then convolve f with g. We can see that y = (f ∗ g) is a smoothed version of f
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Figure 3A.5.1: A synthetic, 1-dimensional signal f (gray) smoothed via convolution into
y = (f ∗ g) (red) with g := [1/3, 1/3, 1/3].

Figure 3A.5.2: A synthetic sine wave f (gray) smoothed via convolution into y = (f ∗ g)
(red) with g := [1/3, 1/3, 1/3].

(Figure 3A.5.1, red curve). The graph of y begins at 31
3

because g is only smoothing one

data point. But once x = 2, g sums three elements of f and then divides by 3, i.e. computes

the average. Once f(5) = 1 is encountered, y dips but not as extremely as f . It takes three

steps (left-to-right) for the effects of f(5) to disappear from y because the size of g’s domain

is three. This smoothing effect is more clear on a larger scale (Figure 3A.5.2).

Here is the Python code used to make Figure 3A.5.1:

1 import matplotlib.pyplot as plt

2

3 # F and G are the two functions we want to convolve.

4 F = [10, 9, 10, 9, 10, 1, 10, 9, 10, 8]

5 G = [1./3, 1./3, 1./3]

6 N = len(F)

7 Y = list(range(N))

8

9 # Convolve F with G.

10 for x in range(N):
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11 total = 0

12 for i in range(len(F)+1):

13 if len(F) > i >= 0 and len(G) > x-i >= 0:

14 total += F[i] * G[x-i]

15 Y[x] = total

16

17 plt.plot(range(N), F, color='gray', label='f')

18 plt.plot(range(N), Y, color='red', label='y')

19 plt.show()

Discrete convolutions in 2-dimensions. Now let’s consider 2-dimensions. The equation

for a 2-dimensional discrete convolution is:

(f ∗ g)(x1, x2) =
∞∑

i=−∞

∞∑
j=−∞

f(i, j) · g(x1 − i, x2 − j). (3.50)

For example, if f and g are

f =


1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

 , g =


a b c

d e f

g h i

 , (3.51)

then to convolve f with g at (x1, x2) = (1, 1) give us

(f ∗ g)(1, 1) =
∞∑

i=−∞

∞∑
j=−∞

f(i, j) · g(1− i, 1− j)

= f(0, 0)g(1, 1) + f(0, 1)g(1, 0) + f(1, 0)g(0, 1) + f(1, 1)g(0, 0)

= 1e+ 2d+ 6b+ 7a.

(3.52)

The sum has only four terms because f and g are defined for only those values. Notice

that g has been flipped twice, once over the x-axis and once over the y-axis.4 The resulting

function y is also a matrix.

4This flipping is irrelevant for kernels that are symmetric, but it is important to be consistent with the
1-dimensional definition.
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Figure 3A.5.3: Edge detection with a kernel g (blue) defined as in Equation (3.53) on an
image of Grace Hopper (a section of the image is shown in red). The output pixel value
(purple) is the convolution between the kernel and the image section.

Kernels. Now that we understand convolutions, we can discuss image kernels. A kernel is

a matrix or function used to process an image. Using the definitions in Equation (3.51), f

is a 1-channel image and g is a kernel.

As an example, consider the following function:

g :=


−1 −1 −1

−1 8 −1

−1 −1 −1

 . (3.53)

If we convolved this kernel with an image, the resulting image would have its edges high-

lighted (edge detected). Why? If the sum of a pixel’s neighbors’ values is roughly equal to

the center pixel’s value5, the output will be a number close to 0. If there is a strong difference

in pixel values, the output will be positive. The result will be an image of white edges on a

black field (Figure 3A.5.3).

The visual effect of convolving a kernel with an image is what we might call filtering.

I mean nothing deep by this word; it is the same idea as applying a filter in photo-editing

5When used in image processing, the convention is that the center of the image kernel g is defined as (0, 0).
For symmetric kernels, the convolution operation is equivalent to taking the Hadamard product of an image
section and a kernel and summing the values in the resulting matrix.

89



Figure 3A.5.4: Two image kernels convolved with an image of Grace Hopper. From left-to-
right: original, blurred or smoothed (a 2D version of Equation (3.49)), and edge-detected.

software. For example, Figure 3A.5.4 shows two kernels applied to a photograph of Grace

Hopper. There are many types of kernels and methods to achieve the same effect. I have

implemented a few kernels and put them on GitHub6.

3A.5.2. Properties of image kernels

Before discussing how CNNs learn image kernels, let’s discuss two important properties of

them.

Location invariance. This idea is visually obvious, but it is worth stating: kernels detect

patterns in images in a way that is location invariant, e.g. if a kernel detects edges, it will

detect edges anywhere. This property of kernels represents an assumption about the data,

but one that makes sense for images and is clearly related to how humans see the world.

Later, when we discuss the architecture of CNNs, we will demonstrate how it takes fewer

parameters to model this assumption.

Robustness to small variations. The second important idea behind CNNs is pooling or

downsampling. This is a straightforward idea that is explained well in a variety of places,

e.g. [Karpathy, 2016]. The basic idea is to compute some function (maximum, minimum, av-

erage, etc.) of a region of input neurons and produce a single output neuron (Figure 3A.5.5).

Pooling is easy to understand, but there is an important benefit that is good to visualize:

pooling discards fluctuations and variations in images.

6https://github.com/gwgundersen/kernels
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Figure 3A.5.5: Illustration of max pooling. Each section of the image (blue, yellow, green,
red) is reduced to a single pixel using the maximum value in each region. Credit : I saw a
version of this figure in Karpathy [2016].

Figure 3A.5.6: Illustration of pooling on (top) an MNIST digit and (bottom) a second
MNIST digit that is a modified version of the first MNIST digit.

I want to demonstrate this robustness using an imaginary CNN that can correctly classify

MNIST digits [LeCun et al., 2010]. First, imagine our CNN has learned some kernels to

correctly classify the digit 2, such as a kernel for detecting horizontal edges. After we

convolve this kernel and use max pooling, imagine that we get Figure 3A.5.6 (top). I have

drawn a red horizontal bar to indicate one of many patterns that the CNN uses to classify

twos. Whenever the CNN detects that red bar, in addition to other patterns of “two-ness”,

it will correctly classify the digit. Next, imagine we see another 2 digit. In Figure 3A.5.6

(bottom), I have edited the top digit so that the top-left line in the digit is more horizontal

than before. What happens? The kernel can still detect the red horizontal line. This is

because max pooling reduces the significance of small variations in digits.

This is an example of how CNNs are robust to small changes in patterns. This robustness
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is due to pooling, not due to more data. Thus, we get this robustness for free. By combining

kernels and pooling, CNNs can detect the same patterns anywhere on the visual field and

are robust to small variations in those patterns.

Now that we understand kernels, we can succinctly state what CNNs do: CNNs auto-

matically learn kernels from image data in order to extract discriminating patterns. For

me, understanding kernels also makes it easier to imagine how someone invented the mod-

ern CNN. Previously, image kernels would have been designed by hand, e.g. Denker et al.

[1989]. The title of LeCun et al. [1989], “Backpropagation applied to handwritten zip code

recognition”, makes sense in this context. The authors are proposing to use automatic differ-

entiation to automatically learn these kernels from data, rather than engineering the image

kernels by hand.

3A.5.3. Network architecture

Now that we understand kernels and pooling, we are ready to understand the architecture

of CNNs. CNNs typically have three types of layers: convolutional, pooling, and fully-

connected. Convolutional layers learn kernels for discriminating features and do so in a way

that is invariant to translations in the patterns; pooling layers perform downsampling to

compress the representation; and the fully-connected layers are typically at the end of the

network for classification or dimension reduction, converting low-level image patterns into

classification labels or embeddings.

Now given what we know so far, I think the most interesting question is: how do we

implement learnable kernels in the convolutional layers? Personally, I found this connection

to be the least well-explained aspect of CNNs—or at least most difficult for me to under-

stand—so I’m going to be as explicit as possible. The answer to my question is shared

weights.

Shared weights. Let’s demonstrate how shared weights can be used to model an image

kernel. To simplify things, let’s move back to 1-dimension. Let our input signal f be:

f =
[
2 2 2 2 2 10 10 10 10 10 7 7 7 7 7

]
. (3.54)
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Figure 3A.5.7: A simple two-layer neural network with shared weights. The input (bottom
row) is f ; the output (top row) is (f ∗g). Red lines have weights of 1; blue lines have weights
of −1. Padding neurons are denoted with dashed lines.

This time, our 1-dimensional kernel g will detect edges:

g :=
[
−1 1

]
. (3.55)

We can express the convolution operator between f and g as a special kind of neural network

layer in which the weights are shared. In Figure 3A.5.7, the red weights (left) are 1 and the

blue weights (right) are −1. (Remember that the convolution operator inverts g.) The input

to the network is f and the output is y = (f ∗g). In other words, by using shared weights, we

have a network layer that is functionally equivalent to convolving a 1-dimension kernel with

our input. If this point is unclear, I suggest the reader calculate the convolution by hand to

confirm it matches the output of the layer in Figure 3A.5.7. Note that to prevent the domain

of y from being smaller than f , we can add an extra input neuron. This is called padding.

In 2-dimensions, when the origin of function is in the center of the matrix, we would add

the padding symmetrically.

Of course, Figure 3A.5.7 is only for a 1-dimensional input. Figure 3A.5.8 is my attempt

at a visualization for a 2-dimensional input. Shared weights are the same color. The key

point is that the downstream neurons (right) each take an input signal from a N ×M grid

(in this case, N = M = 3) from the previous layer. The shared weights are functionally

equivalent to convolving a kernel across the entire image.

In summary, the set of shared weights that define a convolutional layer are functionally
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Figure 3A.5.8: 3D visualization of shared weights. Shared weights are the same color.

Figure 3A.5.9: 3D visualization of two kernels in the same convolutional layer. Kernel
A’s weights are shared if they share a color. Kernel B’s weights have no color for ease of
visualization.

equivalent to the kernel used in traditional image processing. They allow the CNN to detect

features regardless of their location in an image and reduce the number of parameters that

must be learned by the network.

Layers as volumes. It would be useful to for a CNN to learn a set of shared weights

(a set of kernels) for a single layer. In fact, convolutional layers are typically discussed as

three-dimensional volumes of neurons. The first two dimensions are the plane of the image.

The third dimension is the number of kernels that can be learned in a single layer. This

is not the easiest thing to diagram, but Figure 3A.5.9 is my attempt. The point is that a
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single convolutional layer has depth, and that depth indicates the number of kernels that

can be learned by that layer. In Figure 3A.5.9, we have a convolutional layer that learns

two kernels. The set of neurons all connected to the same region of input is called the depth

column.

Importantly, RGB images have three layers (instead of channels) of values. Therefore,

the input to a CNN is often W × H × 3 where W is the width, H is the height, and 3

is the depth of the image. In that case, the convolutional layer’s depth would be a fourth

dimension. For simplicity and consistency, I have only discussed grayscale images.

3A.6 Reparameterization trick

Imagine we want to take the gradient w.r.t. a parameter θ of the expectation Ep(z)[fθ(z)],

where P is the distribution on z with probability function p(·). Provided we can differentiate

fθ(z), we can easily Monte Carlo approximate the gradient:

∇θEp(z)[fθ(z)] = ∇θ
[∫

z

p(z)fθ(z)dz

]
=

∫
z

p(z) [∇θfθ(z)] dz

= Ep(z) [∇θfθ(z)]

≈ 1

L

L∑
`=1

∇θfθ(z`).

(3.56)

In other words, the gradient of the expectation is equal to the expectation of the gradi-

ent. But what happens if our distribution is Pθ with probability function pθ(·), i.e. the
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distribution on z is also parameterized by θ?

∇θEpθ(z)[fθ(z)] = ∇θ
[∫

z

pθ(z)fθ(z)dz

]
=

∫
z

∇θ [pθ(z)fθ(z)] dz

=

∫
z

fθ(z)∇θpθ(z)dz +

∫
z

pθ(z)∇θfθ(z)dz

=

∫
z

fθ(z)∇θpθ(z)dz︸ ︷︷ ︸
What about this?

+Epθ(z) [∇θfθ(z)] .

(3.57)

The first term of the last line of Equation (3.57) is not guaranteed to be an expectation.

Now that we have an understanding of the problem, let’s see what happens when we

apply the reparameterization trick to our simple example. The basic idea is to sample a new

random variable ε and then parameterize the random variable we care about, in this case z,

as a differentiable function of ε that is also parameterized by θ, call this function gθ(·):

ε ∼ p(ε),

z = gθ(ε,y).
(3.58)

We can now Monte Carlo approximate the gradient. Why? Notice that the expectation of

interest can be rewritten as

Epθ(z) [f(y)] = Ep(ε) [f(gθ(ε,y))] . (3.59)

So when computing the derivative of this expectation, the integral can “push inside” the

expectation as desired because the new expectation is w.r.t. the distribution on ε, not on θ:

∇θEpθ(z)[f(z)] = ∇θEp(ε) [f(gθ(ε,y))] (3.60)

= Ep(ε) [∇θf(gθ(ε,y))] (3.61)

≈ 1

L

L∑
`=1

∇θf(gθ(ε`,y)), ε`
iid∼ Pε. (3.62)

In words, we use the reparameterization trick to express a gradient of an expectation as an
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expectation of a gradient. Provided the function gθ(·) is differentiable, then we can then use

Monte Carlo methods to estimate ∇θEpθ(z)[f(z)].
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Chapter 4

Random feature latent variable models

Gaussian process (GP)-based latent variable models [Lawrence, 2004] are flexible and theo-

retically grounded tools for nonlinear dimension reduction, but generalizing to non-Gaussian

data likelihoods within this nonlinear framework is statistically challenging. In this chapter, I

present the use random features to develop a family of nonlinear dimension reduction models

that are easily extensible to non-Gaussian data likelihoods. We call this family random fea-

ture latent variable models (RFLVMs). By approximating a nonlinear relationship between

the latent space and the observations with a function that is linear with respect to random

features, we induce closed-form gradients of the posterior distribution with respect to the

latent variables. This allows the RFLVM framework to support computationally tractable

nonlinear latent variable models for a variety of data likelihoods in the exponential family

without specialized derivations.

4.1 Introduction

Many dimension reduction techniques, such as principal component analysis [Pearson, 1901,

Tipping and Bishop, 1999] and factor analysis [Spearman, 1904, Lawley and Maxwell, 1962],

make two modeling assumptions: (1) the observations are Gaussian distributed, and (2) the

latent structure is a linear function of the observations. However, for many applications,

proper analysis requires us to break these assumptions. For example, in computational

neuroscience, scientists collect firing rates for thousands of neurons simultaneously. These

data are observed as counts, and neuroscientists believe that the biologically relevant latent

98



structure is nonlinear with respect to the data [Cunningham and Byron, 2014].

To capture nonlinear relationships in latent variable models, one approach is to assume

that the mapping between the latent manifold and observations is GP-distributed. A GP is

a prior over the space of real-valued functions, and posterior inference is tractable when the

GP prior is conjugate to the likelihood. This leads to the Gaussian process latent variable

model (GPLVM) [Lawrence, 2004].

The basic GPLVM model with a radial basis function (RBF) kernel has nice statistical

properties that allow for exact, computationally tractable inference methods to be used when

the number of observations is a reasonable size. Deviating from this basic model, however,

leads to challenges with inference.

In GPLVMs with Poisson data likelihoods, for example, we cannot integrate out the GP-

distributed functional map, and we no longer have closed form expressions for the gradient

of the posterior with respect to the latent space. This renders MAP estimation (discussed

in Section 2.3.1) difficult, leading to solutions at poor local optima. (See Wu et al. [2017]

for a discussion.)

Random Fourier features (RFFs) [Rahimi and Recht, 2008] were developed to avoid work-

ing with N ×N dimensional matrices when fitting kernel machines. RFFs accelerate kernel

machines by using a low-dimensional, randomized approximation of the inner product asso-

ciated with a given shift-invariant kernel. For this approximation, RFFs induce a nonlinear

map using a linear function of random features.

We propose to use RFFs to approximate the kernel function in a GPLVM to create

a flexible, tractable, and modular framework for fitting GP-based latent variable models.

In the context of GPLVMs, RFF approximations allow for closed-form gradients of the

objective function with respect to the latent variable. Using RFFs solve a fundamental

statistical problem with GPLVMs in non-Gaussian settings. With a Gaussian likelihood, we

can obtain closed-form gradients by integrating out the GP-distributed maps, but this cannot

be done in the non-Gaussian case. Our solution is to induce these closed-form gradients by

making the data likelihood depend on the latent variables as a linear function of the random

features. In addition, we can tractably explore the space of stationary covariance functions

by using a Dirichlet process mixture prior for the spectral distribution of frequencies [Oliva
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et al., 2016], leading to a flexible latent variable model.

Contributions: This chapter makes the following contributions to the space of nonlinear

latent variable models: (1) we represent the nonlinear mapping in GPLVMs using a lin-

ear function of random Fourier features; (2) we leverage this representation to generalize

GPLVMs to non-Gaussian likelihoods and derive an MCMC sampler for a wide variety of

count-data likelihoods, such as the Poisson, binomial, negative binomial, and multinomial

distributions; (3) we place a prior on the random features to allow data-driven exploration

over the space of shift-invariant kernels, to avoid putting restrictions on the kernel’s func-

tional form. While implementing GPs with RFFs has been done before [Lázaro-Gredilla

et al., 2007, Hensman et al., 2017, Cutajar et al., 2017], it has always been motivated by scal-

ability. However, we motivate RFFs with statistical tractability of non-conjugate GPLVMs.

Thus, our contributions focus on tractability and generality rather than scalability or state-

of-the-art results for specialized models.

We validate our approach on diverse simulated data sets, and show how results from

RFLVMs compare with state-of-the-art methods on a variety of image, text, and scientific

data sets. We release a Python library1 with modular code for reproducing and building on

our work.

4.2 Background

In this section, I introduce three main ideas that are required for understanding RFLVMs:

Gaussian processes (Section 4.2.1), Gaussian process latent variable models (Section 4.2.2),

and random feature approximations for kernel methods (Section 4.2.3). The reader can

comfortably skip to Section 4.3 or skim this material as desired.

4.2.1. Gaussian processes

Rasmussen and Williams [2006] define a Gaussian process (GP) as:

1https://github.com/gwgundersen/rflvm
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Definition 4.2.1. A Gaussian process is a collection of random variables, any finite number

of which have a joint Gaussian distribution.

This definition is fairly abstract, but we can concretize it with an example. Following the

outlines of Rasmussen and Williams [2006] and Bishop [2006], I introduce GPs by using

Bayesian linear regression as an example and showing both the weight- and function-space

interpretations of this model.

Weight-space view. In standard linear regression, we have

yn = w>xn, (4.1)

where our predictor yn ∈ R is just a linear combination of the covariates xn ∈ RD for the

nth sample out of N observations. We can make this model more flexible with M fixed basis

functions,

f(xn) = w>φ(xn), (4.2)

where

φ(xn) =


φ1(xn)

...

φM(xn)

 . (4.3)

Note that in Equation (4.1), w ∈ RD, while in Equation (4.2), w ∈ RM . Now consider a

Bayesian treatment of linear regression that places prior on w,

p(w) = N (w | 0, α−1I), (4.4)

where α−1I is a diagonal precision matrix. In my mind, Bishop [2006] is clear in linking

this prior to the notion of a Gaussian process. He writes in his Section 6.4.1, “For any

given value of w, the definition [our Equation (4.2)] defines a particular function of x. The

probability distribution over w defined by [our Equation (4.3)] therefore induces a probability

distribution over functions f(x).” In other words, if w is random, then w>φ(xn) is random

as well. This example demonstrates how we can think of Bayesian linear regression as
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a distribution over functions. Thus, we can either talk about a random variable w or a

random function f induced by w.

In principle, we can imagine that f is an infinite-dimensional function since we can

imagine infinite data and an infinite number of basis functions. However, in practice, we are

really only interested in a finite collection of N data points. Let

y =


f(x1)

...

f(xN)

 (4.5)

and let Φ be a matrix such that Φnk = φk(xn). Then we can rewrite y as

y = Φw =


φ1(x1) . . . φM(x1)

...
. . .

...

φ1(xN) . . . φM(xN)



w1

...

wM

 . (4.6)

Recall that if random variables z1, . . . , zN are independent Gaussian random variables, then

the linear combination a1z1 + · · ·+ aNzN is also Gaussian for every a1, . . . , aN ∈ R, and we

say that z1, . . . , zN are jointly Gaussian. Since each component of y (each yn) is a linear

combination of independent Gaussian-distributed variables (w := [w1, . . . , wM ]>), the com-

ponents of y are jointly Gaussian. Therefore, we can uniquely specify the normal distribution

of y by computing its mean vector and covariance matrix, which we can do:

E[y] = 0,

Cov(y) =
1

α
ΦΦ>.

(4.7)

If we define K := Cov(y), then we can say that K is a Gram matrix such that

Knm =
1

α
〈φ(xn), φ(xm)〉V = k(xn,xm) (4.8)
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where k(xn,xm) is called a covariance or kernel function,

k : RD × RD 7→ R. (4.9)

Note that this lifting of the input space into feature space V by replacing x>x with k(x,x)

is the kernel trick. (I will discuss kernel methods in more detail in Section 4.2.3.) Also,

keep in mind that we did not explicitly choose k(·, ·); it simply fell out of the way we setup

the problem. In other words, Bayesian linear regression is a specific instance of a Gaussian

process, and we will see that we can choose different mean and kernel functions to get

different types of GPs.

Rasmussen and Williams’s presentation of this section is similar to Bishop’s, except they

derive the posterior p(w | x1, . . .xN), and show that this is Gaussian, whereas Bishop relies

on the definition of jointly Gaussian. I prefer the latter approach, since it relies more on

probabilistic reasoning and less on computation.

Function-space view. Following the outline of Rasmussen and Williams, let’s connect the

weight-space view from the previous section with a view of GPs as functions. These two

interpretations are equivalent, but I found it helpful to connect the traditional presentation

of GPs as functions with a familiar method, Bayesian linear regression.

Now, let us ignore the weights w and instead focus on the function y = f(x). Further-

more, let’s talk about variables f instead of y to emphasize our interpretation of functions

as random variables. We noted in the previous section that a jointly Gaussian random vari-

able f is fully specified by a mean vector and covariance matrix. Alternatively, we can say

that the function f(x) is fully specified by a mean function m(x) and covariance function

k(xn,xm) such that

m(xn) = E[yn]

= E[f(xn)]
(4.10)

and

k(xn,xm) = E[(yn − E[yn])(ym − E[ym])>]

= E[(f(xn)−m(xn))(f(xm)−m(xm))>].
(4.11)
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This is the standard presentation of a Gaussian process, and we denote it as

f ∼ GP(m(x), k(x,x′)). (4.12)

At this point, Definition 4.2.1, which was a bit abstract when presented ex nihilo, begins to

make more sense. With a concrete instance of a GP in mind, we can map this definition onto

concepts we already know. The collection of random variables is y or f , and it can be infinite

because we can imagine infinite or endlessly increasing data. And we have already seen how

a finite collection of the components of y can be jointly Gaussian and are therefore uniquely

defined by a mean vector and covariance matrix. We can model more flexible functions by

constructing the covariance matrix with different kernel functions.

Since we are thinking of a GP as a distribution over functions, let’s sample functions

from it (Equation (4.12)). To do so, we need to define mean and covariance functions. Let’s

use m : x 7→ 0 for the mean function, and instead focus on the effect of varying the kernel.

Consider these three kernels,

k(xn,xm) = exp

{
1

2
‖xn − xm‖2

1

}
squared exponential,

k(xn,xm) = σ2
p exp

{
−2 sin2(π‖xn − xm‖1/p)

`2

}
periodic,

k(xn,xm) = σ2
b + σ2

v(xn − c)(xm − c) linear.

(4.13)

taken from David Duvenaud’s Kernel Cookbook 2. Let our data be 400 evenly spaced real

numbers between −5 and 5. Note that GPs are often used on sequential data, but it is not

necessary to view the index n for xn as either a temporal or spatial index nor do our inputs

need to be evenly spaced. To sample from the GP, we first build the Gram matrix K. Let K

denote the kernel function evaluated on a set of data points rather than a single observation,

let X := {x1, . . . ,xN} be training data, and let X∗ be test data. Then sampling from the

2https://www.cs.toronto.edu/~duvenaud/cookbook/
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GP prior is simply,

f ∼ N (0, K(X∗,X∗)). (4.14)

In the absence of data, test data is loosely “everything” because we haven’t seen any data

points yet. Figure 4.2.1 shows 10 samples of functions defined by the three kernels above.

Figure 4.2.1: Ten samples from a GP with a (left) squared exponential kernel, (middle)
periodic kernel, and (right) linear kernel. A single sample is a function in which the x-axis
is the test data and the y-axis is the predicted value.

In my mind, Figure 4.2.1 makes clear that the kernel is hyperparameter or inductive bias.

Given the same data, different kernels specify completely different types of functions.

Prediction. Ultimately, we are interested in prediction or generalization to unseen test

data given training data. Intuitively, what this means is that we do not want just any

functions sampled from our prior; rather, we want functions that “agree” with our training

data (Figure 4.2.2).

There is an elegant solution to this modeling challenge: conditionally Gaussian random

variables. Recall that a GP is an infinite collection of random variables, any finite number

of which are jointly Gaussian. This means the the model of the concatenation of f and f∗ isf∗

f

 ∼ N
0

0

 ,
K(X∗,X∗) K(X∗,X)

K(X,X∗) K(X,X)

 (4.15)

where for ease of notation, we assume m(·) = 0. Using basic properties of multivariate

105



Figure 4.2.2: Ten samples from a GP posterior with a squared exponential kernel and four
noise-free observations. A conditional Gaussian distribution has zero variance at the observed
data points.

Gaussian distributions, we can compute

f∗ | f ∼ N (K(X∗,X)K(X,X)−1f ,

K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)).
(4.16)

While we are still sampling random functions f∗, these functions “agree” with the training

data. To see why, consider the scenario when X∗ = X; the mean and variance in Equa-

tion (4.15) would be

f = K(X,X)K(X,X)−1f ,

0 = K(X,X)−K(X,X)K(X,X)−1K(X,X)).
(4.17)

In other words, the variance at the training data points is 0 (non-random) and therefore the

random samples are exactly our observations f . To summarize, GP inference is conceptually

straightforward; we simply compute the GP posterior, which is a conditionally Gaussian

distribution with a covariance matrix such that the variance is zero at the observations.

Noisy observations. In Figure 4.2.2, we assumed each observation was noiseless—that

our measurements of some phenomenon were perfect—and fit it exactly. But in practice, we
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might want to model noisy observations,

yn = f(xn) + εn (4.18)

where εn is i.i.d. Gaussian noise or εn
iid∼ N (0, σ2). Then Equation (4.15) becomes

f∗

f

 ∼ N
0

0

 ,
K(X∗,X∗) K(X∗,X)

K(X,X∗) K(X,X) + σ2I

 (4.19)

while Equation (4.16) becomes

f∗ | f ∼ N (E[f∗],Cov(f∗)) (4.20)

where

E[f∗] = K(X∗,X)[K(X,X) + σ2I]−1y

Cov(f∗) = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗)).
(4.21)

Mathematically, the diagonal noise adds “jitter” such that k(xn,xn) 6= 0. In other words,

the variance for the training data is greater than zero.

Uncertainty. An important property of Gaussian processes is that they explicitly model

uncertainty or the variance associated with an observation. This is because the diagonal of

the covariance matrix captures the variance for each data point. This diagonal is, of course,

defined by the kernel function. For example, the squared exponential is clearly unity when

xn = xm, while the periodic kernel’s diagonal depends on the parameter σ2
p. However, recall

that the variance of the conditional Gaussian decreases around the training data, meaning

the uncertainty is clamped, speaking visually, around our observations.

One way to understand this is to visualize two times the standard deviation (95% con-

fidence interval) of a GP fit to more and more data from the same generative process (Fig-

ure 4.2.3). We can see that in the absence of much data (left), the GP falls back on its

prior, and the model’s uncertainty is high. However, as the number of observations increases

(middle, right), the model’s uncertainty in its predictions decreases. If we modeled noisy
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Figure 4.2.3: A visualization of twice the standard deviation (95% confidence interval) of a
GP posterior conditioned on (left) 4, (middle) 12, and (right) 24 noisy observations. As the
number of samples increases, the model’s posterior uncertainty decreases, as quantified by a
decrease in a conditional Gaussian’s variance.

observations, as in Figure 4.2.3, then the uncertainty around the training data would also

be greater than 0 and could be controlled by the hyperparameter σ2.

Summary. There is a lot more to Gaussian processes. I did not, for example, discuss

mean functions, hyperparameters, GP classification, or inducing points for computational

efficiency [Quinonero-Candela and Rasmussen, 2005, Snelson and Ghahramani, 2006], to

name a few. See Rasmussen and Williams [2006] for a thorough discussion of GPs. For

now, this background should be sufficient to understand the GPLVM (discussed next) and

ultimately RFLVMs.

4.2.2. Gaussian process latent variable models

We now discuss a latent variable model that uses Gaussian processes as a prior on the

functions between latent and observation space. This model is called the Gaussian process

latent variable model (GPLVM) [Lawrence, 2004].

PCA to GPLVM. In probabilistic principal component analysis (PCA)3 [Tipping and

Bishop, 1999], we assume our J-dimensional observations Y := [y1, . . . ,yN ]> are a linear

3I use “PCA” to refer to both standard PCA and probabilistic PCA and will specify when the distinction is
not clear from context.
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function of D-dimensional latent variables X := [x1, . . . ,xN ]>, with some additive Gaussian

noise:

yn = Wxn + εn, (4.22)

where D � J and εn
iid∼ N (0, σ2I) is random noise. The linear map W is a J ×D matrix

relating the two sets of variables. We further assume

xn
iid∼ ND(0, I). (4.23)

This model is similar to factor analysis (Section 2.2) but with isotropic rather than non-

isotropic Gaussian noise. In the language of factor analysis, xn are latent variables, the

columns of X are factors (latent features), and W are loadings.

If we assume that each observation is i.i.d., then the marginal distribution of yn is also

Gaussian,

p(yn |W) = NJ(0,WW> + σ2I︸ ︷︷ ︸
C

). (4.24)

The proof of this claim just relies on the fact that since

p(yn,xn |W) = p(yn | xn,W)p(xn |W) (4.25)

is jointly Gaussian, the marginal p(yn |W) is also Gaussian. In effect, we have integrated

out the latent variables X. The log likelihood LN(W) of Equation (4.24) is:

LN(W) = log p(Y |W)

=
N∑
n=1

log p(yn |W)

=
N∑
n=1

[
log

(
1√

(2π)D|C|

)
− 1

2
y>nC−1yn

]

=
N∑
n=1

[
−D

2
log 2π − 1

2
log |C| − 1

2
y>nC−1yn

]

= −ND
2

log 2π − N

2
log |C| − 1

2

N∑
n=1

y>nC−1yn.

(4.26)
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Often, the term
∑N

n=1 y>nC−1yn is written as,

N∑
n=1

y>nC−1yn =
N∑
n=

tr
(
C−1yny

>
n

)
= tr

(
C−1

N∑
n=

yny
>
n

)
= tr(C−1Y>Y).

(4.27)

This just uses a trace trick,

a>Ma = tr(Maa>), (4.28)

and the linearity of the trace operator. To fit probabilistic PCA, we optimize the nonlinear

map W with respect to this marginal log likelihood. Tipping and Bishop [1999] proved

that the maximum likelihood estimate of W is equivalent, up to scale and rotation, to the

eigenvalue-based solution of standard PCA. (As we saw in Section 3A.3.1, we can also fit

probabilistic PCA using EM.)

GPLVM. This marginalize-then-optimize process is reversed for a GPLVM. Rather than

integrating out the latent variable X and then optimizing W, we integrate out W and

optimize X. This requires that we rewrite Equation (4.22) as

yj = Xwj + εj, (4.29)

where now j indexes the columns of Y and W and where εj is now an N - rather than

D-vector. Recall that W is a J ×D matrix. If we assume that its rows are i.i.d., meaning

p(W) =
J∏
j=1

ND(0, α−1I), (4.30)

then we can copy the logic from the previous section exactly, just switching a couple variables.

Now the marginal distribution of yj is

p(yj | X) = NN(0, α−1XX> + σ2I︸ ︷︷ ︸
KX

). (4.31)
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And the log likelihood is

LN(X) = log p(Y | X)

=
J∑
j=1

log p(yj | X)

=
J∑
j=1

[
log

(
1√

(2π)N |KX |

)
− 1

2
y>j K−1

X yj

]

=
J∑
j=1

[
−N

2
log 2π − 1

2
log |KX | −

1

2
y>j K−1

X yj

]

= −JN
2

log 2π − J

2
log |KX | −

1

2

J∑
j=1

y>j K−1
X yj.

(4.32)

If we rewrite the final sum in Equation (4.32) using the trace trick in Equation (4.28), we

get the same formulation as in Lawrence [2004]:

LN(X) = −JN
2

log 2π − J

2
log |KX | −

1

2
tr(K−1

X YY>). (4.33)

Nonlinear kernel functions. Optimizing Equation (4.33) can be viewed as the simplest

form of a GPLVM. This might be surprising because there is no kernel function. Where is the

GP? Notice that KX = α−1XX> + σ2I can be viewed as the covariance matrix induced by

the linear kernel in Equation (4.13). A natural question is then: what if we used a nonlinear

kernel? Recall that a GP is an infinite collection of random variables, defined by a mean

function m(·) and kernel function k(·, ·), such that any finite collection of points is Gaussian

distributed. This is why GPLVMs are often written in the following generative form:

yj ∼ NN(fj(X), σ2
j I),

fj(X) ∼ GP(0,KX),

xn ∼ ND(0, I),

(4.34)

where fj(X) := [fj(x1), . . . , fj(xN)]> and where we now have column- or feature-specific

variance σ2
j . In words, by choosing a specific nonlinear kernel function, we induce a non-

linear relationship between the latent variable X and our observations Y. This nonlinear
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relationship can be viewed as placing a GP prior on each column of the N × J matrix Y.

Summary. In a GPLVM, we optimize Equation (4.33) with respect to X rather than

optimizing Equation (4.26) with respect to W as in probabilistic PCA. One can prove that

the solution solved by optimizing Equation (4.33) with a linear kernel is equivalent the

solution in PCA.

We cannot find the optimal X analytically, but various approximations have been pro-

posed. We can obtain a MAP estimate by integrating out the GP-distributed maps and then

optimizing X with respect to the posterior using scaled conjugate gradients [Lawrence, 2004,

Lawrence and Hyvärinen, 2005], where computation scales as O(N3). To scale inference, we

may use sparse inducing point methods where the computational complexity is O(NM2),

for M � N inducing points [Lawrence, 2007].

Alternatively, we can introduce a variational Bayes approximation of the posterior and

minimize the Kullback–Leibler divergence between the posterior and the variational ap-

proximation with the latent variables X marginalized out. However, integrating out X in

the approximate marginal likelihood is only tractable when we assume that we have Gaus-

sian observations and when we use an RBF kernel with automatic relevance determination,

which limits its flexibility. This variational approach, called a Bayesian GPLVM [Titsias and

Lawrence, 2010, Damianou et al., 2016], may be scaled using sparse inducing point methods.

4.2.3. Random Fourier features

Finally, we review random Fourier features [Rahimi and Recht, 2008] to motivate a random-

ized approximation of the GP-distributed maps in GPLVMs.

Kernel methods. Consider a learning problem with data and targets {(xn, yn)}Nn=1 where

xn ∈ X and yn ∈ Y . Ignoring the bias, a linear model finds a hyperplane β such that the

optimal decision function

f ∗(x) = β>x (4.35)

is linear w.r.t. to the data, where the notion of optimality may be problem- or model-specific.

For example, in logistic regression, we compute the logistic function of f(x), and then thresh-
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old the output probability to produce a binary classifier with Y = {0, 1}. Obviously, linear

models break down when our data are not linearly separable for classification (Figure 4.2.4,

left) or do not have a linear relationship between the features and targets for regression.

In a kernel machine or a kernel method—such as Gaussian processes in Section 4.2.1—,

the input domain X is mapped into another space V in which the targets may be a linear

function of the data. The dimension of V may be high or even infinite, but kernel methods

avoid operating explicitly in this space using the kernel trick: if k : X ×X 7→ R is a positive

definite kernel function, then by Mercer’s theorem there exists a basis function or feature

map φ : X 7→ V such that

k(x,y) = 〈φ(x), φ(y)〉V . (4.36)

Here, 〈·, ·〉V is an inner product in V . Using the kernel trick (see Section 4A.1 for a discussion)

and a representer theorem [Kimeldorf and Wahba, 1971], kernel methods construct nonlinear

models of X that are linear in k(·, ·),

f ∗(x) =
N∑
n=1

αnk(x,xn) = 〈β, φ(x)〉V . (4.37)

In Equation (4.37), f ∗(·) denotes the optimal f(·). Taken together, Equation (4.36) and

Equation (4.37) say that provided we have a positive definite kernel function k(·, ·), we can

avoid operating in the possibly infinite-dimensional space V and instead only compute over N

data points. This works because the optimal decision rule can be expressed as an expansion

in terms of the training samples. See Schölkopf et al. [2001] for a detailed treatment on this

topic.

The main point is that kernel methods allow for flexible modeling. Compare the results

of the the support vector machine in Figure 4.2.4 (right) with the linear model (left), for ex-

ample. Any algorithm that can be represented as a dot product between pairs of samples can

be converted into a kernel method using Equation (4.36), e.g. kernel regression [Nadaraya,

1964, Watson, 1964] and kernel PCA [Schölkopf et al., 1998].

If this representer theorem is new to the reader, note that you have probably already

seen other versions of representer theorems. For example, the optimal coefficients in linear
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Figure 4.2.4: Logistic regression (left) with decision boundary denoted with a solid line and
SVM with RBF kernel (right) on the Scikit-learn half-circles4 data set. Support vectors are
denoted with circles, and the margins are denoted with dashed lines.

regression are

β̂ = (X>X)−1X>y, (4.38)

where X is an N ×D matrix of training data. We make predictions on held out data X∗ as

y∗ = X∗β̂. In other words, the optimal prediction for a linear model can be viewed as an

expansion in terms of the training samples. As another example, the predictive mean in GP

regression (Equation (4.16)) implicitly uses the representer theorem and kernel trick.

While kernel methods are powerful, they do not scale well on large data sets (for huge

N). This is because the machine must operate on a covariance matrix KX , induced by a

particular kernel function, that is N ×N . To be explicit, this matrix is

KX :=


k(x1,x1) k(x1,x2) . . . k(x1,xN)

k(x2,x1) k(x2,x2) . . . k(x2,xN)
...

...
. . .

...

k(xN ,x1) k(xN ,x2) . . . k(xN ,xN)

 . (4.39)

Random features. Rahimi and Recht [2007] proposed a way to scale kernel machines:

approximate the above inner product in Equation (4.36) with a randomized map ϕ : RD 7→
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RM where ideally M � N :

k(x,y) = 〈φ(x), φ(y)〉V ≈ ϕ(x)>ϕ(y). (4.40)

Why does this work, and why is it it a good idea? The representer theorem tells us that the

optimal solution is a weighted sum of the kernel evaluated at our observations. If we have a

good approximation of φ(·), then

f ∗(x) =
N∑
n=1

αnk(xn,x)

=
N∑
n=1

αn〈φ(xn), φ(x)〉V

≈
N∑
n=1

αnϕ(xn)>ϕ(x)

= β>ϕ(x).

(4.41)

In other words, provided ϕ(·) is a good approximation of φ(·), then we can simply project

our data using ϕ(·) and then use fast linear models in RM rather than RN (both β and

ϕ(·) are M -vectors). So the task at hand is to find a random projection ϕ(·) such that it

well-approximates the corresponding nonlinear kernel machine.

According to a blog post by Rahimi5, this idea was inspired by the following observation.

Let w be a random D-dimensional vector such that

w
iid∼ ND(0, I). (4.42)

Now define h as

h : x 7→ exp(iw>x). (4.43)

Above, i is the imaginary unit. Let the superscript ∗ denote the complex conjugate, and

5http://www.argmin.net/2017/12/05/kitchen-sinks/
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recall that the complex conjugate of eix is e−ix. Then note

Ew[h(x)h(y)∗] = Ew[exp(iw>(x− y))]

=

∫
RD
p(w) exp(iw>(x− y))dw

= exp

(
−1

2
(x− y)>(x− y)

)
.

(4.44)

In other words, the expected value of h(x)h(y)∗ is the Gaussian kernel. See Section 4A.2 for

a complete derivation.

This is quite interesting, and it is actually a specific instance of a more general result,

Bochner’s theorem [Bochner, 1959, Rudin, 1962]. Quoting Rahimi and Recht’s version of

Bochner’s theorem with small modifications for consistent notation, the theorem is:

Theorem 4.2.2. Bochner’s theorem: A continuous kernel k(x,y) = k(x − y) on RD is

positive definite if and only if k(∆) is the Fourier transform of a non-negative measure.

The Fourier transform of a non-negative measure is

k(∆) =

∫
p(w) exp(iw∆)dw, (4.45)

where p(w) is the probability function of a distribution Pw. Rahimi and Recht observe that

many popular kernels such as the Gaussian (or radial basis function), Laplace, and Cauchy

kernels are shift-invariant. The kernel k(x−y) depends on the non-negative density function

p(w) (or vice versa).

This gives us a general framework to approximate any shift-invariant kernel by re-defining

h(·) in Equation (4.43) to depend on w from any distribution Pw, not just the spherical

Gaussian in Equation (4.42). Furthermore, if we sample M i.i.d. realizations {wm}Mm=1, we
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can lower the variance of this approximation:

k(x,y) = k(x− y)

=

∫
p(w) exp(iw>(x− y))dw

= Ew

[
exp(iw>(x− y))

]
1
≈ 1

M

M∑
m=1

exp(iw>m(x− y))

=


1√
M

exp(iw>1 x)

1√
M

exp(iw>2 x)
...

1√
M

exp(iw>Rx)



> 
1√
M

exp(−iw>1 y)

1√
M

exp(−iw>2 y)
...

1√
M

exp(−iw>Ry)


2

:= h(x)>h(y)∗.

(4.46)

Step 1 is a Monte Carlo approximation of the expectation. Step 2 is the definition of a random

map h : RD 7→ RM , or an M -vector of normalized h(·) transformations (Equation (4.43)).

Note that we mentioned a dot product ϕ(x)>ϕ(y) in Equation (4.41), but above we have

h(x)>h(y)∗. As we will see in the next section, the imaginary part of our random map will

disappear, and the new transform is what Rahimi and Recht define as ϕ(·).6

Fine tuning. Now that we understand the big idea of a low-dimensional, randomized map

and why it might work, let’s get into the weeds. First, note that if we restrict ourselves to

real-valued kernel functions, we can write

exp(iw>(x− y))
†
= cos(w>(x− y))−(((((

((((i sin(w>(x− y))

= cos(w>(x− y)).
(4.47)

6Rahimi and Recht [2008] use the notation z(·) for this map, but we use the notation ϕ(·) since z will be
used elsewhere.
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Step † is Euler’s formula. We can then define ζw(x)—note that this is still not yet the

function ϕ(x)—without the imaginary unit as

w
iid∼ Pw

b
iid∼ Uniform(0, 2π)

ζw(x) =
√

2 cos(w>x + b).

(4.48)

This works because

Ew[ζw(x)ζw(y)] = Ew[
√

2 cos(w>x + b)
√

2 cos(w>y + b)]

?
= Ew[cos(w>(x + y) + 2b)] + Ew[cos(w>(x− y))]

†
= Ew[cos(w>(x− y))].

(4.49)

Step ? is just trigonometry. See Section 4A.3 for a derivation. Step † uses the fact that since

b ∼ Uniform(0, 2π), the expectation with respect to b is zero:

Ew[cos(w>(x + y) + 2b)] = Ew[Eb[cos(w>(x + y) + 2b) | w]] = 0. (4.50)

See Section 4A.4 for a complete derivation. We are now ready to define the random map

ϕ : RD 7→ RM such that Equation (4.40) holds. Let

ϕ(x) =


1√
M
ζw1(x)

1√
M
ζw2(x)
...

1√
M
ζwR

(x)

 , (4.51)
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and therefore

ϕ(x)>ϕ(y) =
1

M

M∑
m=1

ζwm(x)ζwm(y)

=
1

M

M∑
m=1

2 cos(w>mx + br) cos(w>my + br)

=
1

M

M∑
m=1

cos(w>m(x− y))

≈ Ew[cos(w>(x− y))]

= k(x,y).

(4.52)

We now have a simple algorithm to estimate a shift invariant, positive definite kernel. Draw

M samples of w
iid∼ Pw and b

iid∼ Uniform(0, 2π) and then compute ϕ(x)>ϕ(y).

Example: kernel ridge regression. Let’s see concretely why random Fourier features are

efficient by looking at kernel (ridge) regression [Nadaraya, 1964, Watson, 1964]. (See Welling

[2013] for an introduction to the model.) Equation (4.41) tells us that f ∗(x) is linear in

ϕ(x). Therefore, we just need to convert our input x into random features and apply linear

methods. Concretely, we just want to solve for the coefficients β in

β̂ = (Φ>Φ + λIM︸ ︷︷ ︸
A

)−1Φ>y, (4.53)

where Φ := [ϕ(x1), . . . , ϕ(xN)]> ∈ RN×M . Above, λ is the ridge regression regularization

parameter. See Figure 4.2.5 for the results of comparing Gaussian kernel regression with

random Fourier feature regression.

With Equation (4.53) in mind, it is clear why random Fourier features are efficient:

inverting A has time complexity O(M3) rather than O(N3). If M � N , then we can have

big savings. What is not shown is that even on this small data set, random Fourier feature

regression is over an order of magnitude faster than kernel regression with a Gaussian kernel.

Since kernel machines scale poorly in N , it is easy to make this multiplier larger by increasing

N while keeping M fixed. See Section 4A.6 for a Python implementation.
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Figure 4.2.5: Comparison of Gaussian kernel ridge regression (top left) with ridge re-
gression using random Fourier features (RFF regression) on N = 100 data points with
M ∈ {1, 5, 100}.

Alternative definition. For the remainder of this chapter, we will use this alternative

definition of Equation (4.51):

wm
iid∼ Pw, ϕ(x) :=

√
2

M


sin(w>1 x) cos(w>1 x)

...

sin(w>M/2x) cos(w>M/2x)

 . (4.54)

In other words, we draw M/2 samples from Pw, and the definition in Equation (4.54) doubles

the number of random features to M . Finally, we use the notation Φ to denote ϕ(·) applied

to all observations, i.e. Φ := [ϕ(x1), . . . , ϕ(xN)]>. See Section 4A.5 for a detailed derivation

of this formulation.

4.3 Random feature latent variable models

We now have the necessary background in GPs, the GPLVM, and random Fourier features to

develop RFLVMs. Recall that the main idea is that we will approximate the GP-distributed

functions in the GPLVM with random features, inducing closed-form gradients of the poste-

120



rior with respect to the latent variable. RFFs have been used to reduce the computational

costs of fitting GP regression models from O(N3) to O(NM2) [Lázaro-Gredilla et al., 2010,

Hensman et al., 2017]. However, RFFs have not yet been used to make GPLVMs more

computationally tractable.

4.3.1. Generative model for RFLVMs

The generative model of an RFLVM takes the form:

yj ∼ L (g (Φβj) ,θ) , θ ∼ Pθ,

βj ∼ NM(β0,B0), xn ∼ ND(0, I),

wm ∼ ND(µzm ,Σzm), zm ∼ CRP(α),

α ∼ Gamma(aα, bα), (µk,Σk) ∼ NIW(µ0, ν0, λ0,Ψ0).

(4.55)

Here, L(·) is a likelihood function, g(·) is an invertible link function that maps the real num-

bers onto the likelihood parameters’ support, and θ are other likelihood-specific parameters.

Following Wilson and Adams [2013] and Oliva et al. [2016], we assume the distribution on

w, denoted Pw, is a Dirichlet process mixture of Gaussians (DP-GMM) [Ferguson, 1973, An-

toniak, 1974]. By sampling from the posterior of w, we can explore the space of stationary

kernels and estimate the kernel hyperparameters in a Bayesian way. We assign each wm in

W := [w1, . . . ,wM/2]> to a mixture component with the variable zm, which is distributed

according to a Chinese restaurant process (CRP) [Aldous, 1985] with concentration param-

eter α. This prior introduces additional random variables: the mixture means {µk}Kk=1, and

the mixture covariance matrices {Σk}Kk=1 where K is the number of clusters in the current

Gibbs sampling iteration. (The Gibbs sampler is discussed in Section 4.3.2.)

The randomized map in Equation (4.54) allows us to approximate the original GPLVM

in Equation (4.34) as

yj ∼ NN(Φβj, σ
2
j I),

βj ∼ NM(b0,B0),

xn ∼ ND(0, I).

(4.56)
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We approximate fj(X) in Equation (4.34) as Φβj. This is a Gaussian RFLVM when L(·) is a

Gaussian distribution and g(·) is the identity function. Because the prior distribution on the

mapping weights βj is Gaussian, the model is analogous to Bayesian linear regression given

Φ; if we integrate out βj, we recover a marginal likelihood that approximates the GPLVM’s

marginal likelihood. (See Section 4A.8 for a detailed derivation.)

We use this representation to generalize the RFLVM to other observation types in the

exponential family. For example, a Poisson RFLVM takes the following form:

yj ∼ Poisson(exp(Φβj)),

βj ∼ NM(b0,B0),

xn ∼ ND(0, I).

(4.57)

For distributions including the Bernoulli, binomial, and negative binomial, the functional

form of the data likelihood is

L(Φ,βj, a(yj), b(yj), c(yj))

=
N∏
n=1

c(ynj)
(exp(ϕ(xn)βj))

a(ynj)

(1 + exp(ϕ(xn)βj))b(ynj)
,

(4.58)

for some functions of the data a(·), b(·), and c(·). The general form of this logistic RFLVM

is then:

yj ∼ L(Φ,βj, a(yj), b(yj), c(yj)),

βj ∼ NM(b0,B0),

xn ∼ ND(0, I).

(4.59)

For example, by setting a(ynj) = ynj, b(ynj) = ynj + rj, and c(ynj) =
(
ynj+rj−1

ynj

)
, we get the

negative binomial RFLVM with feature-specific dispersion parameter rj.

4.3.2. Inference for RFLVMs

We now present a general Gibbs sampling framework for all RFLVMs. A consequence of the

linearization induced by the random features is that we can use all available techniques for

Gibbs sampling in linear models that are otherwise not possible for GPLVMs; and unlike
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other sampling methods such as HMC, Gibbs samplers do not require tuning parameters.

First, we write the Gibbs sampling steps to estimate the posterior of the covariance

kernel. Next, we describe estimating the latent variable X by taking the MAP estimate.

Then, we sample the data likelihood-specific parameters θ and linear coefficients βj.

Variables subscripted with zero, e.g., θ0, denote hyperparameters. While the number

of mixture components may change across sampling iterations, let K denote the number

of components in the current Gibbs sampling step. We initialize all the parameters in our

model by drawing from the prior, except for X, which we initialize with PCA.

First, we sample zm following Algorithm 8 from Neal [2000]. We choose to use a sampling

method that integrates out the Dirichlet process-distributed mixture weights because such

samplers can better propose new features [Dubey et al., 2020] and are therefore more effective

at exploring the posterior behavior of the covariance kernel. Let nk =
∑

` δ(z` = k), and let

n−mk denote the same sum with zm excluded. Then we sample the posterior of zm from the

following discrete distribution for k = 1, 2, . . . , K:

p(zm = k | µ,Σ,W, α) =


n−mk

M−1+α
N (wm | µk,Σk) n−mk > 0

α
M−1+α

∫
N (wm | µ,Σ)NIW(µ,Σ)dµdΣ n−mk = 0.

(4.60)

Given assignments z := [z1, . . . , zM/2]> and RFFs W, the posterior of Σk is inverse-Wishart

distributed. Given Σk, the posterior of µk is normally distributed [Gelman et al., 2013]:

Σk ∼ W−1(Ψk, νk), µk ∼ N (mk,
1

λk
Σk).

Ψk := Ψ0 +

M/2∑
m:zm=k

(wm − w̄(k))(wm − w̄(k))> +
λ0nk
λ0 + nk

(wm − µ0)(wm − µ0)>

w̄(k) :=
1

nk

M∑
m:zm=k

wm, νk := ν0 + nk,

mk :=
λ0µ0 + nkw̄

k

λ0 + nk
, λk := λ0 + nk.

(4.61)

We cannot sample from the full conditional distribution of W, but prior work suggested

a Metropolis–Hastings (MH) sampler in which the proposal distribution’s density function
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q(W) is set to the prior density function p(W | z,µ,Σ) = ND(µzm ,Σzm) (Equation (4.55))

and acceptance ratio ρMH [Oliva et al., 2016]:

w?
m ∼ q(W) := p(W | z,µ,Σ), ρMH := min

{
1,
p(Y | X,w?

m,θ)

p(Y | X,wm,θ)

}
. (4.62)

Finally, we sample the DP-GMM concentration parameter α [Escobar and West, 1995]. We

augment the model with variable η to make sampling α conditionally conjugate:

η ∼ Beta(α + 1,M),

πη
1− πη

=
aα +K − 1

M(bα − log(η))
, K = |{k : nk > 0}| ,

α ∼ πηGamma(aα +K, bα − log(h))

+ (1− πη)Gamma(aα +K − 1, bα − log(η)).

(4.63)

For the Gaussian RFLVM (Equation (4.56)), let B0 = σ−2S0. We integrate out βj and σ−2

in closed form to obtain a marginal likelihood,

p(yj | X,W) =
1

(2π)N/2
·

√
|S0|
|SN |

· b
a0
0

baNN
· Γ(aN)

Γ(a0)
, (4.64)

where

SN := Φ>Φ + S0,

βN := S−1
N (β>0 S0 + Φ>yj),

aN := a0 +N/2,

bN := b0 + (1/2)(y>j yj + β>0 S0β0 − β>NSNβN).

(4.65)

(See Section 4A.8 or Minka [2000] for details.) However, inference can be slow because

marginalizing out βj introduces dependencies between the latent variables, and the complex-

ity becomes O(NM2). Alternatively, we can Gibbs sample βj and take the MAP estimate

of X using the original log likelihood where the complexity is O(NM).

In the Poisson RFLVM (Equation (4.57)), we no longer have the option of marginalizing

out βj. Instead, we take iterative MAP estimates of βj and X. Given Φ, inference for

βj is analogous to Bayesian inference for a Poisson generalized linear model (GLM). In
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Figure 4.3.1: Simulated data with Gaussian emissions. (Left) Inferred latent variables for
both a GPLVM and Gaussian RFLVM. (Upper middle) Comparison of estimated fj(X)
for a single feature as estimated by GPLVM and RFLVM. (Lower middle) Comparison of
MSE reconstruction error on held out Y∗ for increasing M , where M is the number of
inducing points for GPLVM and random Fourier features for RFLVM. (Right) Ground truth
covariance matrix KX compared with the RFLVM estimation for increasing M .

Section 4.4.1 and Section 4.4.2, we show that, by inducing closed-form gradients with respect

to X through RFFs, this iterative MAP procedure produces results that are competitive with

benchmarks on count data. For logistic RFLVMs (Equation (4.59)), we use Pólya–gamma

augmentation [Polson et al., 2013] to make inference tractable. A random variable ω is

Pólya–gamma distributed with parameters b > 0 and c ∈ R, denoted ω ∼ PG(b, c), if

ω
d
=

1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

, (4.66)

where
d
= denotes equality in distribution and gk ∼ Gamma(b, 1) are independent gamma

random variables. The identity critical for Pólya–gamma augmentation is

(eψnj)anj

(1 + eψnj)bnj
= 2−bnjeκnjψnj

∫ ∞
0

e−ωψ
2
nj/2p(ω)dω, (4.67)

where κnj = anj − bnj/2 and p(ω) = PG(ω | bnj, 0). If we define ψnj := ϕ(xn)>βj, then

Equation (4.67) allows us to rewrite the likelihood in Equation (4.58) as proportional to a

Gaussian. Furthermore, we can sample ω conditioned on ψnj as p(ω | ψnj) ∼ PG(bnj, ψnj).
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This enables convenient, closed-form Gibbs sampling steps of βj, conditioned on Pólya–

gamma augmentation variables ωnj:

ωnj | βj ∼ PG(bnj, ϕ(xn)>βj),

βj | Ωj ∼ N (mωj ,Vωj),

Vωj := (Φ>ΩjΦ + B−1
0 )−1,

mωj := Vωj(Φ
>κj + B−1

0 β0),

(4.68)

where Ωj = diag([ω1j . . . ωNj]) and κj = [κ1j . . . κNj]
>. (See Section 4A.7 for a more thorough

discussion of this technique.) This technique has been used to derive Gibbs samplers for

binomial regression [Polson et al., 2013], negative binomial regression [Zhou et al., 2012],

and correlated topic models [Chen et al., 2013, Linderman et al., 2015]. Here, we use it

to derive samplers for logistic RFLVMs. (See Section 4A.9 for detailed derivations of the

negative binomial RFLVM.)

RFLVMs are identifiable up to the rotation and scale of X. As a result, MAP estimates

of X between iterations are unaligned as they can be arbitrarily rescaled and rotated through

inference. Thus, a point estimate of X, denote this as X̂, that is a function of the Monte

Carlo samples of X, e.g., the expectation of X̂ across the MCMC samples, will not be

meaningful. To this end, we arbitrarily fix the rotation of X̂ by taking the singular value

decomposition (SVD) of the MAP estimate, X̂ := USVT , and setting X̂ to be the left

singular vectors corresponding to the D largest singular values, X̂ := [u1, . . . ,uD] where

diag(S) = [s1 . . . sD] and s1 ≥ s2 ≥ . . . ≥ sD. Then, we rescale X̂ so that the covariance

of the latent space is the identity matrix. This has the effect of enforcing orthogonality,

and does not allow heteroskedasticity in the latent dimensions. This operation is analogous

to the covariance adjustment in parameter-expanded expectation–maximization [Liu et al.,

1998] and has been used to fix the rotation in Bayesian factor analysis models [Ročková and

George, 2016].
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Figure 4.4.1: Simulated data with Poisson emissions. (Top) True latent variable X compared
with inferred latent variables X̂ from benchmarks (see text for abbreviations) and a Poisson
RFLVM. (Bottom) Distance matrices between true X and X̂ from the above benchmark
(darker is farther away).

4.4 Experiments

In our results, we refer to the Gaussian-distributed GPLVM using inducing point methods

for inference as GPLVM [Titsias and Lawrence, 2010]7. We fit all GPLVM experiments

using the GPy package [GPy, 2012]. We refer to the Poisson-distributed GPLVM using a

double Laplace approximation as DLA-GPLVM [Wu et al., 2017]. DLA-GPLVM is designed

to model multi-neuron spike train data, and the code8 initializes the latent space using the

output of a Poisson linear dynamical system [Macke et al., 2011], and places a GP prior on

X. To make the experiments comparable for all GPLVM experiments, we initialize DLA-

GPLVM with PCA and assume x
iid∼ ND(0, I). We refer to our GPLVM with random Fourier

features as RFLVM and explicitly state the assumed distribution. In Section 4.4.1, we use

a Gaussian RFLVM with the linear coefficients {βj}Jj=1 marginalized out (Equation (4.64))

for a fairer comparison with the GPLVM.

Since hyperparameter tuning our model on each data set would be both time-consuming

and unfair without also tuning the baselines, we fixed the hyperparameters across experi-

ments. We used 2000 Gibbs sampling iterations with 1000 burn-in steps, M = 100, and

D = 2. We initialized K = 20 and α = 1. In Section 4.4.2, we used D = 3 and visualized

X̂ after the best affine transformation onto 2-D rat positions following Wu et al. [2017].

7We used GPy’s implementation BayesianGPLVMMiniBatch, which supports inducing points and prediction
on held out data.

8https://github.com/waq1129/LMT

127

https://github.com/waq1129/LMT


Figure 4.4.2: Hippocampal place cells. (Left three plots) Inferred latent space for the DLA-
GPLVM and the Poisson RFLVM. The points are colored by three major regions of the
true rat position in a W-shaped maze. (Right two plots) KNN accuracy using 5-fold cross
validation and R2 performance of the best affine transformation from X̂ onto the rat positions
X. Error bars computed using five trials.

Figure 4.4.3: MNIST digits visualized in 2-D latent space inferred from DLA-GPLVM (left)
and Poisson RFLVM (right). Following Lawrence [2004], we plotted images in a random
order while not plotting any images that result in an overlap. The RFLVM’s latent space
is visualized as a histogram of 1000 draws after burn-in. The plotted points are the sample
posterior mean.

For computational reasons, MNIST and CIFAR-10 were subsampled (see Section 4A.11 for

details).
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Figure 4.4.4: Yale faces data visualized in 2-D latent space using a Poisson RFLVM (left).
Synthetic faces for the Yale data set sampled from the posterior data generating process
using a Poisson RFLVM (right).

Figure 4.4.5: CIFAR-10 image data set visualized in 2-D latent space using a Poisson RFLVM
(left). Synthetic digits for MNIST sampled from the posterior data generating process using
a Poisson RFLVM (right).

4.4.1. Simulated data

We first evaluate RFLVM on simulated data. We set X to be a 2-D S-shaped manifold,

sampled functions F := {fj(X)}Jj=1 from a Gaussian process with an RBF kernel, and

then generated observations for Gaussian emissions (Equation (4.34)) and Poisson emissions

(Equation (4.57)). For all simulations, we used N = 500, J = 100, and D = 2.

For these experiments, we computed the mean-squared error (MSE) between test set

observations, Y∗, and predicted observations Ŷ∗, where we held out 20% of the observations
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for the test set. To evaluate our latent space results, we projected the estimated latent space,

X̂, onto the hyperplane that minimizes the squared error with the ground truth, ‖X−X̂A‖2
2,

and calculated the R2 value between the true X and the projected latent space X̂A. We

evaluated our model’s ability to estimate the GP outputs fj(X) ≈ Φβj by comparing the

MSE between the estimated ϕ(X̂)βj and the true generating fj(X). We computed the mean

and standard deviation of the MSE and R2 results by running each experiment five times.

We compared the performance of a Gaussian RFLVM to the GPLVM. We ran these

experiments across multiple values of M , where M denotes the number of random features

for the RFLVM and the number of inducing points for the GPLVM. Both models recovered

the true latent variable X accurately and estimated the nonlinear maps, F, well (Figure 4.3.1,

upper middle). Empirically, a GPLVM shows better performance for estimating Y∗ than

the RFLVM (Figure 4.3.1, lower middle). We hypothesize that this is because Nyström’s

method has better generalization error bounds than RFFs when there is a large gap in

the eigenspectrum [Yang et al., 2012], which is the case for KX . However, we see that

the RFLVM approximates the true KX given enough random features (Figure 4.3.1, right),

though perhaps less accurately than the GPLVM (Figure 4.3.1, lower middle).

To demonstrate the utility of our model beyond Gaussian-distributed data, we compared

results for simulated count data from a Poisson RFLVM with the following benchmarks:

PCA, nonnegative matrix factorization (NMF) [Lee and Seung, 1999], hierarchical Poisson

factorization (HPF) [Gopalan et al., 2015], latent Dirichlet allocation (LDA) [Blei et al.,

2003], variational autoencoder (VAE) [Kingma and Welling, 2013], deep count autoencoder

(DCA) [Eraslan et al., 2019], negative binomial VAE (NB-VAE) [Zhao et al., 2020], and

Isomap [Balasubramanian et al., 2002]. Additionally, we compared results to our own naive

implementation of the Poisson GPLVM that performs coordinate ascent on X and F by

iteratively taking MAP estimates without using RFFs. We refer to this method as MAP-

GPLVM. We found that the Poisson RFLVM infers a latent variable that is more similar to

the true latent structure than other methods (Figure 4.4.1). Linear methods such as PCA

and NMF lack the flexibility to capture this nonlinear space, while nonlinear but Gaussian

methods such as Isomap and VAEs recover smooth latent spaces that lack the original

structure. The MAP-GPLVM appears to get stuck in poor local modes because we do not
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Table 4.4.1: Classification accuracy evaluated by fitting a KNN classifier (K = 1) with
five-fold cross validation. Mean accuracy and standard deviation were computed by running
each experiment five times.

PCA NMF HPF LDA VAE DCA

Bridges 0.8469± 0.0067 0.8664± 0.0164 0.7860± 0.0328 0.6747± 0.0412 0.8141± 0.0301 0.7093± 0.0317
CIFAR-10 0.2651± 0.0019 0.2450± 0.0028 0.2516± 0.0074 0.2248± 0.0040 0.2711± 0.0083 0.2538± 0.0178
Congress 0.5558± 0.0098 0.5263± 0.0108 0.6941± 0.0537 0.7354± 0.1018 0.6563± 0.0314 0.5917± 0.0674
MNIST 0.3794± 0.0146 0.2764± 0.0197 0.3382± 0.0370 0.2176± 0.0387 0.6512± 0.0228 0.1620± 0.0976

Montreal 0.6802± 0.0099 0.6878± 0.0207 0.6144± 0.1662 0.6238± 0.0271 0.6702± 0.0325 0.6601± 0.0997
Newsgroups 0.3896± 0.0043 0.3892± 0.0042 0.3921± 0.0122 0.3261± 0.0193 0.3926± 0.0113 0.4000± 0.0153

Spam 0.8454± 0.0037 0.8237± 0.0040 0.8719± 0.0353 0.8699± 0.0236 0.9028± 0.0128 0.8920± 0.0414
Yale 0.5442± 0.0129 0.4739± 0.0135 0.5200± 0.0071 0.3261± 0.0193 0.6327± 0.0209 0.2861± 0.0659

NB-VAE Isomap DLA-GPLVM Poisson RFLVM Neg. binom. RFLVM Multinomial RFLVM

Bridges 0.7485± 0.0613 0.8375± 0.0240 0.8578± 0.0101 0.8440± 0.0165 0.8664± 0.0191 0.7984± 0.0102
CIFAR-10 0.2671± 0.0048 0.2716± 0.0056 0.2641± 0.0063 0.2789± 0.0080 0.2656± 0.0048 0.2652± 0.0024
Congress 0.8541± 0.0074 0.5239± 0.0178 0.7815± 0.0185 0.7673± 0.0109 0.8093± 0.0154 0.6516± 0.0385
MNIST 0.2918± 0.0174 0.4408± 0.0192 0.3820± 0.0121 0.6494± 0.0210 0.4463± 0.0313 0.3794± 0.0153

Montreal 0.7246± 0.0131 0.7049± 0.0098 0.2885± 0.0001 0.8158± 0.0210 0.7530± 0.0478 0.7555± 0.0784
Newsgroups 0.4079± 0.0080 0.4021± 0.0098 0.3687± 0.0077 0.4144± 0.0029 0.4045± 0.0044 0.4076± 0.0039

Spam 0.9570± 0.0045 0.8272± 0.0047 0.9521± 0.0069 0.9515± 0.0023 0.9443± 0.0035 0.9397± 0.0015
Yale 0.5261± 0.0346 0.5891± 0.0155 0.4788± 0.0991 0.6894± 0.0295 0.5394± 0.0117 0.5441± 0.0059

have gradients of the posterior in closed form. (See Wu et al. [2017] for a discussion.) Both

DLA-GPLVM and RFLVM, however, do have closed-form gradients and approximate the

true manifold with similar R2 and MSE values for X̂ and f̂j(X) (not shown).

4.4.2. Hippocampal place cell data

Next, we checked whether a non-Gaussian RFLVM recovers an interpretable latent space

when applied to a scientific problem. In particular, we use an RFLVM to model hippocampal

place cell data [Wu et al., 2017]. Place cells, a type of neuron, are activated when an animal

enters a particular place in its environment. Here, Y is an N × J matrix of count-valued

spikes where n indexes time and j indexes neurons. These data were jointly recorded while

measuring the position of a rat in a W-shaped maze. We are interested in reconstructing

the latent positions of the rat with X.

We quantified goodness-of-fit of the latent space by assessing how well the RFLVM cap-

tures known structure, in the form of held-out sample labels, in the low-dimensional space.

After estimating X̂, we performed K-nearest neighbors (KNN) classification on X̂ with

K = 1. We ran this classification five times using 5-fold cross validation. We report the

mean and standard deviation of KNN accuracy across five experiments.

The Poisson RFLVM and DLA-GPLVM have similar performance in terms of how well
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they cluster samples in the latent space as measured by KNN accuracy using regions of the

maze as labels. Furthermore, the models have similar performance in recovering the true rat

positions X, measured by R2 performance (Figure 4.4.2). While this clustering would not

be impressive for many benchmark data sets such as MNIST, dimension reduction for large-

scale neural recordings is an open problem [Cunningham and Byron, 2014, Linderman et al.,

2016, Wu et al., 2017]. These results suggest that our generalized RFLVM framework finds

structure even in empirical, complex, non-Gaussian data and is competitive with models

built for this specific task.

4.4.3. Text and image data

Finally, we examine whether an RFLVM captures the latent space of text, image, and em-

pirical data sets. We hold out the labels and use them to evaluate the estimated latent space

using the same KNN evaluation from Section 4.4.2. Across all eight data sets, the Poisson

and negative binomial RFLVMs infer a low-dimensional latent variable X̂ that generally

captures the latent structure as well as or better than linear methods like PCA and NMF.

Moreover, adding nonlinearity but retaining a Gaussian data likelihood—as with real-valued

models like Isomap [Tenenbaum et al., 2000], a variational autoencoder (VAE) [Kingma

and Welling, 2013], and the Gaussian RFLVM, or even using the Poisson-likelihood DLA-

GPLVM—perform worse than the Poisson and negative binomial RFLVMs (Table 4.4.1,

Figure 4.4.3, Figure 4.4.4, Figure 4.4.5). The point of these results is not that RFLVMs are

the best method for every data set, a spurious claim given “no free lunch” theorems [Wolpert

and Macready, 1997], but rather that our framework allows for the easy implementation of a

large number of practical non-conjugate GPLVMs. Thus, RFLVMs are useful when first per-

forming nonlinear dimension reduction on non-Gaussian data. We posit that our improved

performance is because the generating process from the latent space to the observations for

these data sets is (in part) nonlinear, non-RBF, and integer-valued. See Section 4A.11.2 for

wall-time experiments for the models in Table 4.4.1.
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4.5 Discussion

We presented a framework that uses random Fourier features to induce computational

tractability between the latent variables and GP-distributed maps in Gaussian process latent

variable models. Our approach allows the Gaussian model to be extended to arbitrary dis-

tributions, and we derived an RFLVM for Gaussian, Poisson and logistic distributions. We

described distribution-specific inference techniques for each posterior sampling step. Our

empirical results showed that each was competitive in downstream analyses with existing

distribution-specific approaches on diverse data sets including synthetic, image, text, and

multi-neuron spike train data. We are particularly interested in exploring extensions of our

generalized RFLVM framework to more sophisticated models such as extending GP dynamic

state-space models [Ko and Fox, 2011] to count data and neuroscience applications, which

assume temporal structure in X.

RFLVMs have a number of limitations that motivate future work. First, the latent vari-

ables are unidentifiable up to scale and rotation. Our rescaling procedure (Section 4.3.2) does

not allow heteroscedastic dimensions and enforces orthogonality between the Gaussian latent

variables. This prevents the use of more structured priors, such as a GP prior on X, since any

inferred structure is eliminated between iterations. We are interested in adopting constraints

from factor analysis literature to address the identifiability issues without a restrictive rescal-

ing procedure [Erosheva and Curtis, 2011, Millsap, 2001, Ghosh and Dunson, 2009]. Second,

label switching in mixture models is a well-studied challenge that is present in our model.

Enforcing identifiability may improve inference and model interpretability [Stephens, 2000].

In this work, we focused on distributions in the exponential family because this class is

both ubiquitous and well-studied. However, we do not see obvious obstacles to extending

our approach to data likelihoods outside the exponential family, as we only need closed-form

gradients to learn the latent space. Finally, our model has a number of hyperparameters such

as the latent dimension, the number of random Fourier features, and the number of Gibbs

sampling iterations. Both simplifying the model and estimating these hyperparameters from

data are two important directions to improve the usability of RFLVMs.
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4A Appendix

4A.1 Kernel trick

4A.1.1. Implicit inner products

Imagine we have some data for a classification problem that is not linearly separable. A

classic example is Figure 4A.1.1 (left). We would like to use a linear classifier. How might

we do this? One idea is to augment our data’s features so that we can “lift” it into a higher

dimensional space in which our data are linearly separable (Figure 4A.1.1, right).

Figure 4A.1.1: The “lifting trick”. (a) A binary classification problem that is not linearly
separable in R2. (b) A lifting of the data into R3 using a polynomial kernel, φ([x1 x2]) =
[x2

1 x2
2

√
2x1x2]>.
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Let’s formalize this approach. Let our data be {(x1, y1), . . . , (xN , yN)} where xn ∈ RD in

general. Now consider D = 2 and a single data point

xn =

xn1

xn2

 . (4.69)

We might transform each data point with a function (the polynomial kernel),

φ(xn) =


x2
n1

x2
n2

√
2xn1xn2

 . (4.70)

Since our new data, φ(xn), is in R3, we might be able to find a hyperplane β in 3D to

separate our observations,

β>φ(xn) = β0 + β1x
2
n1 + β2x

2
n2 + β3

√
2xn1xn2 = 0. (4.71)

This idea, while powerful, is not the kernel trick, but it deserves a name. Let us call it the

lifting trick.9

In order to find this hyperplane, we need to run a classification algorithm on our data after

it has been lifted into three-dimensional space. At this point, we could be done. We take RD,

perform our lifting trick into RJ where D � J , and then use a method like logistic regression

to try to linearly classify it. However, this might be expensive for an expressive enough φ(·).

For N data points lifted into J dimensions, we need NJ operations just to preprocess the

data. But we can avoid computing φ(·) entirely while still doing linear classification in this

lifted space if we’re clever. This second trick is the kernel trick.

9I am not aware of a name for this trick, but I find naming things useful.
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Notice that for φ(·), we have

φ(xn)>φ(xm) =
[
x2
n1 x2

n2

√
2xn1xn2

]
·


x2
m1

x2
m2

√
2xm1xm2


= x2

n1x
2
m1 + x2

n2x
2
m2 + 2xn1xn2xm1xm2.

(4.72)

We would then need to compute this for all our N data points. As we discussed, the problem

with this approach is scalability. However, consider the following derivation,

(x>mxm)2 =

[xn1 xn2

]
·

xm1

xm2

2

= (xn1xm1 + xn2xm2)2

= (xn1xm1)2 + (xn2xm2)2 + 2(xn1xm1)(xn2xm2)

= φ(xn)>φ(xm).

(4.73)

What just happened? Rather than lifting our data into R3 and computing an inner product,

we just computed an inner product in R2 and then squared the sum. While both derivations

have a similar number of mathematical symbols, the actual number of operations is much

smaller for the second approach. This is because a inner product in R2 is two multiplications

and a sum. The square is just the square of a scalar, so 4 operations. The first approach

squared three components of two vectors (6 operations), then performed an inner product

(3 multiplications, 1 sum) for 9 operations.

This is the kernel trick: we can avoid expensive operations in high dimensions by finding

an appropriate kernel function k(xn,xm) that is equivalent to the inner product in higher

dimensional space. In our example above, k(xn,xm) = (x>nxm)2. In other words, the kernel

trick performs the lifting trick for cheap.
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4A.1.2. Mercer’s theorem

The mathematical basis for the kernel trick was proven by James Mercer [Mercer, 1909].

Mercer proved that any positive definition function k(xn,xm) with xn,xm ∈ RD defines

an inner product of another vector space V . Thus, if you have a function φ(·) such that

〈φ(xn), φ(xm)〉V is a valid inner product in V , you know a kernel function exists that can

perform the lifting trick for cheap. Alternatively, if you have a positive definite kernel, you

can deconstruct its implicit basis function φ(·).

This idea is formalized in Mercer’s Theorem10:

Definition 4A.1.1. Mercer’s Theorem: A symmetric function k(x,y) can be expressed as

an inner product

k(x,y) = 〈φ(x), φ(y)〉 (4.74)

for some φ(·) if and only if k(x,y) is positive semidefinite, i.e.

∫
k(x,y)g(x)g(y)dxdy ≥ 0, ∀g (4.75)

or, equivalently, if 
k(x1,x1) k(x1,x2) . . . k(x1,xN)

k(x2,x1) k(x2,x2) . . . k(x2,xN)
...

...
. . .

...

k(xN ,x1) k(x2,x2) . . . k(xN ,xN)

 (4.76)

is positive semidefinite for any collection {x1, . . . ,xN}.

This theorem is if and only if, meaning we could explicitly construct a kernel function

k(·, ·) for a given φ(·) or we could take a kernel function and use it without having an explicit

representation of φ(·).

If we assume everything is real-valued, then we can demonstrate this fact easily. Let K

be the positive semidefinite Gram matrix above. Since it is real and symmetric, it has an

10This definition was taken from Michael Jordan’s lecture notes: https://people.eecs.berkeley.edu/

~jordan/courses/281B-spring04/lectures/lec3.pdf
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eigendecomposition of the form

K = U>ΛU (4.77)

where Λ = diag([λ1, . . . , λN ]). Since K is positive definite, then λn ≥ 0 and the square root

is real-valued. We can write an element of K as

Kij =
[
Λ1/2 U:,i

]Λ1/2

U:,j

 . (4.78)

Define φ(xi) := Λ1/2U:,i. Therefore, if our kernel function is positive semidefinite—if it

defines a Gram matrix that is positive semidefinite—then there exists a function φ : X 7→ V

such that

k(x,y) = φ(x)>φ(y) (4.79)

where X is the space of samples.

4A.1.3. Infinite-dimensional feature spaces

An interesting consequence of the kernel trick is that kernel methods, equipped with the

appropriate kernel function, can be viewed as operating in possibly infinite-dimensional

feature space. As an example, consider the radial basis function (RBF) kernel,

kRBF(x,y) = exp
(
−γ‖x− y‖2

2

)
. (4.80)
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Let’s take it for granted that this is a valid positive semidefinite kernel. Let kpoly(r) denote

a polynomial kernel of degree r, and let γ = 1/2. Then

kRBF(x,y) = exp

(
−1

2
‖x− y‖2

)
= exp

(
−1

2
〈x− y,x− y〉

)
?
= exp

(
−1

2
[〈x,x− y〉 − 〈y,x− y〉]

)
?
= exp

(
−1

2
[〈x,x〉 − 〈x,y〉 − [〈y,x〉 − 〈y,y〉]〉]

)
= exp

(
−1

2
[〈x,x〉+ 〈y,y〉 − 2〈x,y〉]

)
= exp

(
−1

2
‖x‖2

)
exp

(
−1

2
‖y‖2

)
exp (−2〈x,y〉)

(4.81)

Above, the two steps labeled ? leverage the fact that

〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 (4.82)

in general for inner products. Now let C be a constant,

C := exp

(
−1

2
‖x‖2

)
exp

(
−1

2
‖y‖2

)
, (4.83)

and note that the Taylor expansion of ef(x) is

ef(x) =
∞∑
r=0

[f(x)]r

r!
. (4.84)

We can write the RBF kernel as

kRBF(x,y) = C exp (−2〈x,y〉)

= C

∞∑
r=0

〈x,y〉r

r!

= C
∞∑
r

kpoly(r)(x,y)

r!
.

(4.85)
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So the RBF kernel can be viewed as an infinite sum over polynomial kernels. As r increases,

each polynomial kernel lifts the data into higher dimensions, and the RBF kernel is an infinite

sum over these kernels.

4A.2 Gaussian kernel derivation

Let δ = x− y. Then:

Ew[h(x)h(y)∗]

= Ew[exp(iw>x) exp(−iw>y))]

= Ew[exp(iw>δ)]

=

∫
RD
p(w) exp(iw>δ)dw

= (2π)−D/2
∫
RD

exp

(
−1

2
w>w

)
exp(iw>δ)dw

= (2π)−D/2
∫
RD

exp

(
−1

2
w>w − iw>δ

)
dw

= (2π)−D/2
∫
RD

exp

(
−1

2

(
w>w − 2iw>δ − δ>δ

)
− 1

2
δ>δ

)
dw

= (2π)−D/2 exp

(
−1

2
δ>δ

)∫
RD

exp

(
−1

2
(w − iδ)> (w − iδ)

)
dw︸ ︷︷ ︸

(2π)D/2

= exp

(
−1

2
δ>δ

)
= k(δ).

(4.86)

In other words, k(·) is the Gaussian kernel when Pw is the spherical Gaussian distribution.

4A.3 Proof of cos(x + y) = cos(x) cos(y)− sin(x) sin(y)

Recall from trigonometry11 that

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y). (4.87)

11See this Khan Academy video for a proof: https://www.youtube.com/watch?v=0VBQnR2h8XM
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Furthermore, note that cos(−x) = cos(x) since the cosine function is symmetric about

x = 0. And the sine function has odd symmetry, sin(−x) = − sin(x). Thus, with a little

clever manipulation, we can write

cos(x+ y) + cos(x− y)

= cos(x+ y) + cos(x+ (−y))

= [cos(x) cos(y)− sin(x) sin(y)] + [cos(x) cos(−y)− sin(x) sin(−y)]

= [cos(x) cos(y)−(((((
((sin(x) sin(y)] + [cos(x) cos(y) +((((

(((sin(x) sin(y)]

= 2 cos(x) cos(y).

(4.88)

4A.4 Expectation of cos(t + b)

Note that

Ew

[
cos(w>(x + y) + 2b)

]
= Ew

[
Eb
[
cos(w>(x + y) + 2b) | w

]]
(4.89)

holds by the law of total expectation. We claim the inner conditional expectation is zero.

To ease notation, let t = w>(x− y). Then

Eb [cos(t + 2b) | w] =

∫ 2π

0

cos(t + 2b)

2π
db

=
1

2π

∫ 2π

0

cos(t + 2b)db

=
1

2π

[
sin(t + 2b)

∣∣∣2π
0

]
=

1

2π
[sin(t)− sin(t + 4π)]

= 0.

(4.90)

The last step holds because sin(t) = sin(t± 2πk) for any integer k.
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4A.5 Alternative definition of random features

Consider this alternative definition of the random map:

ζwm(x) =

cos(w>mx)

sin(w>mx)

 . (4.91)

Draw M ′ = M/2 samples

wm
iid∼ Pw. (4.92)

Then

1

M ′

M ′∑
m=1

ζwm(x)>ζwm(y) :=
2

M

M/2∑
m=1


cos(w>mx)

sin(w>mx)

> cos(w>my)

sin(w>my)




=
2

M

M/2∑
m=1

cos(w>mx) cos(w>my) + sin(w>mx) sin(w>my)

?
=

2

M

M/2∑
m=1

cos(w>mx−w>my)

≈ Ew[cos(w>(x− y))]

= k(x,y).

(4.93)

Step ? just applies the product identities from trigonometry:

2 sin(x) sin(y) = cos(x− y)−����
��

cos(x+ y),

2 cos(x) cos(y) = cos(x− y) +���
���cos(x+ y).

(4.94)

The right-most terms above cancel in Equation (4.93), and we get 2 cos(x− y).

4A.6 Code for kernel ridge regression with random features

1 import numpy as np

2 from sklearn.linear_model import Ridge

3
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4 class RFFRidgeRegression:

5

6 def __init__(self, rff_dim=1, alpha=1.0, sigma=1.0):

7 """Kernel ridge regression using random Fourier features.

8

9 rff_dim : Dimension of random feature.

10 alpha : Regularization strength. Should be a positive float.

11 """

12 self.fitted = False

13 self.rff_dim = rff_dim

14 self.sigma = sigma

15 self.lm = Ridge(alpha=alpha)

16 self.b_ = None

17 self.W_ = None

18

19 def fit(self, X, y):

20 """Fit model with training data X and target y.

21 """

22 Z, W, b = self._get_rffs(X, return_vars=True)

23 self.lm.fit(Z.T, y)

24 self.b_ = b

25 self.W_ = W

26 self.fitted = True

27 return self

28

29 def predict(self, X):

30 """Predict using fitted model and testing data X.

31 """

32 Z = self._get_rffs(X, return_vars=False)

33 return self.lm.predict(Z.T)

34

35 def _get_rffs(self, X):

36 """Return random Fourier features based on data X, as well as random

37 variables W and b.

38 """

39 N, D = X.shape
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40 if self.W_ is not None:

41 W, b = self.W_, self.b_

42 else:

43 W = np.random.normal(loc=0, scale=1, size=(self.rff_dim, D))

44 b = np.random.uniform(0, 2*np.pi, size=self.rff_dim)

45 B = np.repeat(b[:, np.newaxis], N, axis=1)

46 norm = 1./ np.sqrt(self.rff_dim)

47 Z = norm * np.sqrt(2) * np.cos(self.sigma * W @ X.T + B)

48 return Z, W, b

4A.7 Pólya–gamma augmentation

Consider the task of Bayesian inference for models with binomial likelihoods parameterized

by log-odds. Two well-known examples of such models are logistic regression and negative

binomial regression. For example, in logistic regression (also discussed in Section 2.1), the

dependent variables are assumed to be i.i.d. from a Bernoulli distribution with parameter

p := [p1, . . . , pN ], and therefore the likelihood function is

LN(p) ∝
N∏
n=1

pynn (1− pn)1−yn = p
∑
yn

n (1− pn)N−
∑
yn . (4.95)

The observations interact with the response through a linear relationship with the log-odds,

log

(
pn

1− pn

)
= β0 + xn1β1 + · · ·+ xnDβD = β>xn. (4.96)

If we solve for pn in Equation (4.96), we get

pn =
exp(β>xn)

1 + exp(β>xn)
, (4.97)

and we can represent the likelihood—now in terms of β instead of p—as

LN(β) ∝ [exp(β>x)]
∑
yn

[1 + exp(β>x)]N
. (4.98)
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Due to this functional form, Bayesian inference for logistic regression is intractable [Bishop,

2006]. This is because the evidence would require normalizing the product of a prior dis-

tribution (e.g. a Gaussian prior on β) times the likelihood function in Equation (4.98). A

similar problem arises for other models with binomial likelihoods parameterized by log-odds.

However, Polson et al. [2013] introduced a new method called Pólya–gamma augmentation

that allows for constructing simple Gibbs samplers for these models. The goal of this section

is to discuss their main results in detail, understand the derivations, and implement this

Gibbs sampler.

4A.7.1. Pólya–gamma random variables

If ω is a Pólya–gamma distributed random variable with parameters b > 0 and c ∈ R,

denoted ω ∼ PG(b, c), then

p(ω | b, c) =
1

2π2

∞∑
k=1

gk
(k − 1/2)2 + c2/(4π2)

(4.99)

where gk ∼ Gamma(b, 1) are independent gamma random variables. While this density

function is complicated, Polson et al. [2013] show that all the finite moments of ω can be

written in closed form. For example, the expectation can be calculated immediately,

E[ω] =
b

2c
tanh(c/2). (4.100)

In particular, Polson et al. [2013] proved two useful properties of Pólya–gamma variables.

First,
(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω (4.101)

where κ = a− b/2 and p(ω) = PG(ω | b, 0). And second,

p(ω | ψ) ∼ PG(b, ψ). (4.102)

While the proof of Equation (4.101) is a few lines in the paper, it is dense. See Section 4A.7.5

for the proof with details. See Section 4A.7.6 for a derivation of Equation (4.102).
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4A.7.2. Logistic regression with PG augmentation

It may not be immediately obvious why the right-hand side of Equation (4.101) is useful. Its

utility is that we can construct Gibbs samplers of logistic models or models with likelihoods

of the form in Equation (4.103). To be concrete, consider Bayesian inference for logistic

regression. Recall that the nth observation’s contribution to the likelihood Equation (4.98),

denoted Ln(β), is

Ln(β) =

(
exp(β>xn)

)yn
1 + exp(β>xn)

. (4.103)

Using Equation (4.101), we can express this likelihood contribution as

(
exp(β>xn)

)yn
1 + exp(β>xn)

= −2 exp
{
κnβ

>xn
}∫ ∞

0

exp
{
−ωn(β>xn)2/2

}
p(ωn | 1, 0)dωn

= −2 exp
{
κnβ

>xn
}
Ep(ωn|1,0)

[
exp(−ωn(β>xn)2/2)

]
,

(4.104)

where κn := yn − 1/2. Note that if we condition on ωn, the likelihood contribution in Equa-

tion (4.104) is Gaussian in β:

p(β | Ω,y) = p(β)
N∏
n=1

Ln(β | ωn)

‡∝ p(β)
N∏
n=1

exp
{
κnβ

>xn
}

exp
{
−ωn(β>xn)2/2

}
?∝ p(β)

N∏
n=1

exp

{
−ωn

2

(
β>xn −

κn
ωn

)2
}

= p(β) exp

{
−1

2
(z−Xβ)>Ω (z−Xβ)

}
†
= p(β) exp

{
−1

2

(
β −X−1z

)>
X>ΩX

(
β −X−1z

)}
,

(4.105)

where z := 〈κ1/ω1, . . . , κN/ωN〉 and Ω := diag([ω1, . . . , ωN ]). Step ‡ holds because the

expectation in Equation (4.104) is constant if we condition on ωn. Step ? works by completing

the square (see Section 4A.7.7), while step † is just a little algebra (see Section 4A.7.8).

In summary, if our prior on β is Gaussian (quadratic in β), then Equation (4.105) is

tractable because the posterior can be written as Gaussian (β). This suggests that we can
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construct a Gibbs sampler, where we repeatedly sample Ω given β and then β given Ω.

4A.7.3. PG-augmented Gibbs sampler

To perform Gibbs sampling with two parameters, we repeatedly fix one parameter while

conditionally sampling from the other. Concretely for us, we first initialize β. Then we for

t = 1, . . . T , we sample

Ω(t+1) ∼ PΩ|β(t) ,

β(t+1) ∼ Pβ|Ω(t+1) .
(4.106)

Provided we can compute each density above, we’re done. The first density comes from Equa-

tion (4.102). We know that

ωn | β ∼ PG(1,β>xn). (4.107)

In other words, we sample each element along the diagonal of Ω using Equation (4.107).

The second equation is a bit trickier. If the prior on β is N (b,B), then the conditional

distribution Pβ|Ω,y is

β | Ω,y ∼ N (mω,Vω), (4.108)

where

Vω := (X>ΩX + B−1)−1,

mω := Vω(X>κ+ B−1b),
(4.109)

where κ := 〈κ1, . . . , κN〉. The derivation just requires the matrix formula for completing

the square and a bit of algebra. (See Section 4A.7.9 for details; it is worth skimming

this derivation to confirm that the reason it works is because β is Gaussian.) Thinking

algorithmically, if we can sample ωn, we can use this reparameterization to get a conditionally

Gaussian likelihood centered at X−1z with covariance X>ΩX.

4A.7.4. Demo

Section 4 of Polson et al. [2013] discusses simulating PG random variables. The details of this

are beyond the scope of this thesis, and thankfully Scott Linderman has already created a
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Cython port12 of Jesse Windle’s code13 for sampling PG random variables. Using this library,

we can easily construct a Gibbs sampler for logistic regression using PG augmentation:

1 import matplotlib.pyplot as plt

2 import numpy as np

3 from numpy.linalg import inv

4 import numpy.random as npr

5 from pypolyagamma import PyPolyaGamma

6

7 def sigmoid(x):

8 """Numerically stable sigmoid function.

9 """

10 return np.where(x >= 0,

11 1 / (1 + np.exp(-x)),

12 np.exp(x) / (1 + np.exp(x)))

13

14 def multi_pgdraw(pg, B, C):

15 """Utility function for calling `pgdraw` on every pair in vectors B, C.

16 """

17 return np.array([pg.pgdraw(b, c) for b, c in zip(B, C)])

18

19 def gen_bimodal_data(N, p):

20 """Generate bimodal data for easy sanity checking.

21 """

22 y = npr.random(N) < p

23 X = np.empty(N)

24 X[y] = npr.normal(0, 1, size=y.sum())

25 X[~y] = npr.normal(4, 1.4, size=(~y).sum())

26 return X, y.astype(int)

27

28 # Set priors and create data.

29 N_train = 1000

30 N_test = 1000

31 b = np.zeros(2)

32 B = np.diag(np.ones(2))

12https://github.com/slinderman/pypolyagamma
13https://github.com/jwindle/BayesLogit

148

https://github.com/slinderman/pypolyagamma
https://github.com/jwindle/BayesLogit


33 X_train, y_train = gen_bimodal_data(N_train, p=0.3)

34 X_test, y_test = gen_bimodal_data(N_test, p=0.3)

35 # Prepend 1 for the bias \beta_0.

36 X_train = np.vstack([np.ones(N_train), X_train])

37 X_test = np.vstack([np.ones(N_test), X_test])

38

39 # Peform Gibb sampling for T iterations.

40 pg = PyPolyaGamma()

41 T = 100

42 Omega_diag = np.ones(N_train)

43 beta_hat = npr.multivariate_normal(b, B)

44 k = y_train - 1/2.

45

46 for _ in range(T):

47 # \omega ~ PG(1, x*\beta).

48 Omega_diag = multi_pgdraw(pg, np.ones(N_train), X_train.T @ beta_hat)

49 # \beta ~ N(m, V).

50 V = inv(X_train @ np.diag(Omega_diag) @ X_train.T + inv(B))

51 m = np.dot(V, X_train @ k + inv(B) @ b)

52 beta_hat = npr.multivariate_normal(m, V)

53

54 y_pred = npr.binomial(1, sigmoid(X_test.T @ beta_hat))

55 bins = np.linspace(X_test.min()-3., X_test.max()+3, 100)

56 plt.hist(X_test.T[y_pred == 0][:, 1], color='r', bins=bins)

57 plt.hist(X_test.T[~(y_pred == 0)][:, 1], color='b', bins=bins)

58 plt.show()

We can see in Figure 4A.7.1 that the method works nicely. The only data points that

are misclassified are where the two Gaussian distributions overlap.

4A.7.5. Proof of main result

We want to prove Equation (4.101) or

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω, (4.110)

149



Figure 4A.7.1: (Left) Test data from a bimodal distribution colored based on ground truth
binary labels. (Right) Test data colored based on predictions from a Bayesianb logistic
regression model using PG-augmented Gibb sampling.

where ω is a PG random variable with PDF (Equation (4.99)). First, plug a = κ+ b/2 into

the left-hand side of Equation (4.101),

(eψ)a

(1 + eψ)b
=

(eψ)κ+b/2

(1 + eψ)b

=
(eψ)κ(eψ)b/2

(1 + eψ)b

=
(eψ)κ

(1 + eψ)b(e−ψ/2)b

=
(eψ)κ(
1+eψ

eψ/2

)b
(4.111)

We can introduce the hyperbolic cosine through the identity

cosh(x) =
ex + e−x

2
. (4.112)
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Plugging ψ/2 in for x and working backwards on the denominator in the last line of Equa-

tion (4.111), we have (
1 + eψ

eψ/2

)b
=

(
eψ

eψ/2
+

1

eψ/2

)b
=
(
eψ/2 − e−ψ/2

)2

= [2 cosh(ψ/2)]b.

(4.113)

This recapitulates the first step in Polson’s proof, the line starting after the phrase, ”Ap-

pealing to (3), we may write the left-hand side of (7) as...”:

(eψ)a

(1 + eψ)b
=

(eψ)κ(
1+eψ

eψ/2

)b =
(eψ)κ

[2 cosh(ψ/2)]b
=

2−b(eψ)κ

coshn(ψ/2)
. (4.114)

The next step uses Equation 4 from Polson et al. [2013]:

E[exp(−ωt)] =
1

coshb(
√
t/2)

(4.115)

and where we just set t = ψ2/2:

E
[
exp

(
−ωψ

2

2

)]
=

1

coshb(ψ/2)
. (4.116)

Finally, we plug Equation (4.116) into Equation (4.114), and we’re done:

(eψ)a

(1 + eψ)b
=

2−b(eψ)κ

coshn(ψ/2)
= 2−beψκE

[
exp

(
−ωψ

2

2

)]
. (4.117)

The expectation is with respect to ω ∼ PG(b, 0). Just apply the definition of expectation

to Equation (4.117), and we’re done.

4A.7.6. Proof of secondary result

By the definitions of a PG random variable and expectation,

E[exp(−ω)ψ2/2] =

∫ ∞
0

exp(−ωψ2/2)p(ω)dω. (4.118)
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Plug this into Polson’s Equation (5) with c = ψ.

4A.7.7. Completing the square

This derivation relies on the univariate case of completing the square:

exp
{
κβ>x

}
exp

{
−ω (β>x)2

2

}
= exp

{
κβ>x− ω (β>x)2

2

}
= exp

{
−ω

2

(
(β>x)2 − 2κ

ω
(β>x)

)}
= exp

{
−ω

2

(
(β>x)2 − 2κ

ω
(β>x) +

κ2

ω2
− κ2

ω2

)}
∝ exp

{
−ω

2

(
β>x− κ

ω

)2
}
.

(4.119)

4A.7.8. Making the likelihood quadratic in βj

We can show

(z−Xβ)>Ω (z−Xβ) =
(
β −X−1z)>X>ΩX(β −X−1z

)
(4.120)

with a little algebra:

(z−Xβ)>Ω(z−Xβ)

= [X(β −X−1z)]>Ω[X(β −X−1z)]

= (β −X−1z)>X>ΩX(β −X−1z).

(4.121)

4A.7.9. Sum of two quadratic forms in x

Note that the sum of two quadratic forms in x can be written as a single quadratic form

plus a constant term that is independent of x. Consider the equation

(x− µ)>Σ−1(x− µ) + (x− ν)>Ψ−1(x− ν). (4.122)
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First, expand each quadratic term out:

(x− µ)>Σ−1(x− µ) = x>Σ−1x− 2µ>Σ−1x + µ>Σ−1µ,

(x− ν)>Ψ−1(x− ν) = x>Ψ−1x− 2ν>Ψ−1x + ν>Ψ−1ν.
(4.123)

If we combine similar terms and distribute, we get

x>(Σ−1 + Ψ−1)x− 2(µ>Σ−1 + ν>Ψ−1)x + (µ>Σ−1µ+ ν>Ψ−1ν) (4.124)

which is again quadratic in x. If we set

V := Σ−1 + Ψ−1,

m := Σ−1µ+ Ψ−1ν,

R := µ>Σ−1µ+ ν>Ψ−1ν,

(4.125)

and apply completing the square, then we can write the above as

x>Vx− 2m>x +R = (x−V−1m)V(x−V−1m)−m>V−1m +R. (4.126)

This is proportional to a Gaussian kernel with mean V−1m and covariance V−1. We can

ignore the remainder terms m>V−1m and R since they do not depend on β.

This is the trick used in the paper. Using the notation in the paper, both Gaussians

are quadratic in β; one has mean b and covariance B, and the other has mean X−1z and

covariance X>Ω−1X. Doing a little pattern matching, we get

V := (B−1 + X>ΩX)−1,

m := B−1b + (X>ΩX)X−1z,

= B−1b + X>Ωz,

?
= B−1b + X>κ.

(4.127)

Step ? holds because if we multiply each value in Ω by the definition of z, we get back κ.

Thus, we have shown that Pβ|y,ω is Gaussian with mean V−1m and covariance V−1.
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4A.8 Marginal likelihood in Bayesian linear regression

For ease of notation, we drop the j subscript, and therefore Y is now y := [y1 . . . yN ]> and

βj is now β. Consider the linear regression model

y = Φβ + ε, ε
iid∼ NN(0, σ2I), (4.128)

where Φ := [ϕ(x1) . . . ϕ(xN)]>, an N ×M matrix. A common conjugate prior on β is a

normal–inverse–gamma distribution,

β | σ2 ∼ NM(β0, σ
2S−1

0 ),

σ2 ∼ InvGamma(a0, b0).
(4.129)

We can write the functional form of the posterior and prior terms in Equation (4.129) as

p(y | Φ,β, σ2) = (2πσ2)−N/2 exp

(
− 1

2σ2
(y −Φβ)>(y −Φβ)

)
,

p(β | σ2) = (2πσ2)−M/2 |S0|1/2 exp

(
− 1

2σ2
(β − β0)>S0(β − β0)

)
,

p(σ2
β) =

ba00

Γ(a0)
(σ2

β)−(a0+1) exp

(
−b0

σ2

)
.

(4.130)

We can combine the likelihood’s Gaussian kernel with the prior’s kernel in the following way:

(y −Φβ)>(y −Φβ) + (β − β0)>S0(β − β0)

= y>y + β>0 S0β0 − β>NSNβN + (β − βN)>SN(β − βN).
(4.131)

where βN and SN are defined as

SN := Φ>Φ + S0,

βN := S−1
N (β>0 S0 + Φ>y).

(4.132)
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Now our posterior can be written as

p(y | Φ,β, σ2) ∝ (2π)−M/2 |S0|1/2 exp

(
− 1

2σ2

[
(β − βN)>SN(β − βN)

])
(2πσ2)−N/2 exp

(
− 1

2σ2

[
y>y + β>0 S0β0 − β>NSNβN

])
ba00

Γ(a0)
(σ2)−(a0+1) exp

(
−b0

σ2

)
.

(4.133)

We can see that we have an M -variate normal distribution on the first line. If we ignore

(2π)−N/2 and inverse–gamma prior normalizer, we can combine the bottom two lines to be

proportional to an inverse–gamma distribution,

(σ2)−(a0+N/2+1) exp

(
− 1

σ2

[
b0 +

1

2

{
y>y + β>0 S0β0 − β>NSNβN

}])
. (4.134)

Now define aN and bN as

aN := a0 +
N

2

bN := b0 +
1

2
(y>y + β>0 S0β0 − β>NSNβN).

(4.135)

Then we can write our posterior as

p(β, σ2 | Φ,y) ∝ p(β | Φ,yj, σ2)p(σ2 | Φ,y), (4.136)

where

β | Φ,y, σ2 ∼ NM(βN ,SN),

σ2 | y,Φ ∼ InvGamma(aN , bN).
(4.137)

Now to compute the log marginal likelihood, we want

p(y | Φ, a0, b0) =

∫∫
p(y | X,β, σ2)p(β), σ2 | a0, b0) dMβ dσ2. (4.138)
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Using the definitions in Equation (4.132) and Equation (4.135), we can write the joint as

p(y,β, σ2) = (2πσ2)−P/2 |S0|1/2 exp

(
− 1

2σ2

[
(β − βN)>SN(β − βN)

])
(σ2)−(aN+1) exp

(
−bN
σ2

)
(2π)−N/2

ba00

Γ(a0)
.

(4.139)

The integral over β is only over the Gaussian kernel, which allows us to compute it imme-

diately:

(2πσ2)M/2 |SN |−1/2 =

∫
exp

(
−1

2
(β − βN)>

[
1

σ2
SN

]
(β − βN)

)
dMβ. (4.140)

The terms (2πσ2)M/2 in Equation (4.139) cancel, and the first line of Equation (4.139) reduces

to √
|S0|
|SN |

. (4.141)

We can compute the second integral in Equation (4.138) because we know the normalizing

constant of the gamma kernel,

Γ(aN)

baNN
=

∫
(σ2)−(aN+1) exp

(
−bN
σ2

)
dσ2. (4.142)

Putting everything together, we see that the marginal likelihood’s probability function is

p(y | Φ, a0, b0) =
1

(2π)N/2
·

√
|S0|
|SN |

· b
a0
0

baNN
· Γ(aN)

Γ(a0)
. (4.143)

156



4A.9 Negative binomial Gibbs sampler updates

4A.9.1. Sampling βj

Let ω be a Pólya–gamma distributed random variable with parameters b > 0 and c ∈ R,

denoted ω ∼ PG(b, c). Now consider an NB likelihood on Y,

LN(β) =
N∏
n=1

J∏
j=1

(exp
{
β>j ϕ(xn)

}
)ynj

(1 + exp
{
β>j ϕ(xn)

}
)ynj+rj

. (4.144)

Using Equation (4.101), we can express the nj-th term in the negative binomial likelihood

using the following variable substitutions,

ψ = β>j ϕ(xn), a = ynj,

b = ynj + rj, κ =
ynj − rj

2
.

(4.145)

This gives us

(exp
{
β>j ϕ(xn)

}
)ynj

(1 + exp
{
β>j ϕ(xn)

}
)ynj+rj

∝ exp

{
ynj − rj

2
β>j ϕ(xn)

}∫ ∞
0

exp

{
−ωnj

(β>j ϕ(xn))2

2

}
p(ωnj)dωnj

= exp
{
−ωnj

2

(
β>j ϕ(xn)− znj

)2
}
,

(4.146)

where

znj :=
ynj − rj

2ωnj
. (4.147)

Finally, note that

ω | Ψ ∼ PG(b,Ψ) =⇒ ωnj | βj ∼ PG
(
ynj + rj,β

>
j ϕ(xn)

)
. (4.148)
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If we vectorize across N , we can sample each βj following Polson et al. [2013]’s proposed

Gibbs sampler:

βj | ωj ∼ N (mωj ,Vωj)

ωj | βj ∼ PG(yj + rj,Φβj)
(4.149)

where

Ωj := diag([ω1j, . . . ,ωNj]),

Vωj := (Φ>ΩjΦ + B−1
0 )−1,

mωj := Vωj(Φ
>κj + B−1

0 β0),

κj := (yj − rj)/2.

(4.150)

4A.9.2. Sampling rj

Consider the hierarchical model

ynj ∼ NB(rj, pnj),

rj ∼ Gamma(a0, 1/h),

h ∼ Gamma(b0, 1/g0).

(4.151)

Zhou and Carin [2012] showed we can sample r as follows:

rj ∼ Gamma

(
Lj,

1

−
∑N

n=1 log(max(1− pnj,−∞))

)
. (4.152)

where

Lj :=
N∑
n=1

`j∑
t=1

un`, un` ∼ log(pnj), `j ∼ Poisson(−rj ln(1− pnj)). (4.153)

Zhou has released code.14

14https://mingyuanzhou.github.io/Softwares/LGNB_Regression_v0.zip
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4A.10 Multinomial Gibbs sampler updates

In order to derive a Gibbs sampler for the multinomial likelihood, we first must use the

reparameterization of the likelihood developed in Holmes et al. [2006]. We may rewrite the

likelihood as

LN(β) =
N∏
n=1

Γ
(∑J

j=1 ynj + 1
)

∏J
j=1 Γ (ynj + 1)

J∏
j=1

(
exp {ϕ(xn)βj}∑J
j=1 exp {ϕ(xn)βj}

)ynj

∝
N∏
n=1

J∏
j=1

(exp {ϕ(xn)βj − ξnj})ynj

(1 + exp {ϕ(xn)βj − ξnj})ynj+
∑J
j=1 ynj

,

(4.154)

where ξnj = log
∑

j′ 6=j exp{ϕ(xn)βj′}. By convention and for identifiability purposes, we set

βJ = 0. We let κnj = ynj −
∑J

j=1 ynj/2. Now that we have written the likelihood in this

form, we may use the Pólya–gamma augmentation trick again:

(exp {ϕ(xn)βj − ξnj})ynj

(1 + exp {ϕ(xn)βj − ξnj})ynj+
∑J
j=1 ynj

∝ exp
{
κnj (ϕ(xn)βj − ξnj)−

ωnj
2

(ϕ(xn)βj − ξnj)2
}
.

(4.155)

So this gives us a posterior w.r.t. βj as

p(βj | yj,X)

∝ p(βj)
N∏
n=1

exp

{
κn (ϕ(xn)βj − ξj)−

1

2
(ϕ(xn)βj − ξj)T Ωn (ϕ(xn)βj − ξj)

}
,

(4.156)

which we can rewrite into a closed-form update as

βj | ωj ∼ N (mωj ,Vωj), (4.157)
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where

Ωj := diag([ω1j, . . . ,ωNj])

Vωj := (Φ>ΩjΦ + B−1
0 )−1,

mωj := Vωj(Φ
>(κj + ξTj Ωj) + B−1

0 β0),

κj := yj −
1

2

J∑
j=1

ynj.

(4.158)

And we sample Ωj with

ωj | βj ∼ PG

(
J∑
j=1

ynj,Φβj − ξj

)
. (4.159)

Although we can sample the βj parameters in closed form with the Pólya–gamma augmen-

tation, we still face a problem with obtaining the MAP of X through optimization when

we assume the likelihood is multinomial. Baker [1994] discusses the optimization problem

of learning the MLE of the regression parameters in a multinomial logistic link regression

problem. It is difficult to optimize parameters with respect to an objective function where

the parameters are pushed through the normalization constant of a softmax function. To

avoid this problem, we may write the nth contribution to the likelihood,

Ln(β) ∝
J∏
j=1

(
exp {ϕ(xn)βj}∑J
j=1 exp {ϕ(xn)βj}

)ynj

, (4.160)

as a Poisson probability mass function with an additional N -dimensional nuisance parameter,

h, that we must learn through optimization,

Ln(β) ∝
J∏
j=1

(exp {h + ϕ(xn)βj})ynj exp {− exp {h + ϕ(xn)βj}} , (4.161)

where the MLE for the parameters in this Poisson reparamaterization are equal to the MLE

learned in the original multinomial likelihood. In our implementation, we use this Poisson

parameterization to learn the MAP of X.
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4A.11 Experiment details

4A.11.1. Data descriptions and preprocessing

• Bridges: We used the number of bicycle crossing per day over four East River bridges

in New York City15. Since these data are unlabeled, we used weekday versus weekend as

binary labels since such information is correlated with bicycle counts (Figure 4A.11.1,

left).

• CIFAR-10: We limited the classes to [1− 5] and subampled 400 images for each class

for a final data set of size 2000. We converted the images to grayscale and resized them

from 32× 32 down to 20× 20 pixels.

• Congress: These data are word frequency counts from individual members of the

109th Congress from Gentzkow and Shapiro [2010]. Labels are political party: Demo-

crat, Independent, Republican.

• MNIST: We limited the data set size by randomly subsampling 1000 images.

• Montreal: We use the number of cyclists per day on eight bicycle lanes in Montreal16.

Since these data are unlabeled, we used the four seasons as labels, since seasonality is

correlated with bicycle counts (Figure 4A.11.1, right).

• Newsgroups: The 20 Newsgroups data set17. We limited the classes to sci.med,

alt.atheism, and comp.sys.mac.hardware, and limited the vocabulary to words with

document frequencies in the range 10− 90%.

• Spam: The SMS Spam data set from the UCI Machine Learning Repository18. Emails

are labeled spam or ham (not spam).

15https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/

gua4-p9wg
16http://donnees.ville.montreal.qc.ca/dataset/f170fecc-18db-44bc-b4fe-5b0b6d2c7297/

resource/64c26fd3-0bdf-45f8-92c6-715a9c852a7b
17http://qwone.com/~jason/20Newsgroups/
18https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection
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Figure 4A.11.1: (Left) The number of bicycle crossings over the Queensboro Bridge from
April through November 2017. (Right) The number of cyclists on Berri St. in Montreal
throughout 2015.

• Yale: The Yale Faces data set19. We used subject IDs as labels.

4A.11.2. Scalability experiments

To assess scalability of RFLVMs, we computed the wall-time in minutes required to fit

both RFLVMs and the benchmarks (Table 4A.11.1). For both the VAE and deep count

autoencoder, we trained the neural networks for 2000 iterations (default used in software

package20). For DLA-GPLVM, we ran the optimizer for 50 iterations (default used in software

package21). For RFLVMs, we ran the Gibbs samplers for 100 iterations. While results

in Table 4.4.1 were run for 2000 Gibbs sampling iterations to ensure convergence for all data

sets, we found empirically that reducing the number of iterations to 100 did not significantly

change the results. We find that RFLVMs are indeed slower than most methods, but not

significantly so. For example, on the CIFAR-10 data set, a VAE takes 23.7 minutes, while

a Poisson RFLVM takes 22.9 minutes and a negative binomial RFLVM takes 55.7 minutes.

The DLA-GPLVM is slowest, taking 69.8 minutes.

19http://vision.ucsd.edu/content/yale-face-database
20https://github.com/theislab/dca
21https://github.com/waq1129/LMT
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Table 4A.11.1: Wall-time in minutes for model fitting. Mean and standard error were
computed by running each experiment five times.

PCA NMF HPF LDA VAE DCA

Bridges 0.0186± 0.0005 0.0182± 0.0012 0.0273± 0.0002 0.0528± 0.0067 1.8193± 0.0708 0.5740± 0.0255
CIFAR-10 0.4398± 0.0743 0.4151± 0.0123 1.0894± 0.0500 0.8674± 0.0199 23.6770± 0.3789 1.1341± 0.0540
Congress 0.0244± 0.0002 0.0245± 0.0007 0.7296± 0.0824 0.0846± 0.0221 4.2919± 0.0539 0.5448± 0.0134
MNIST 0.2368± 0.0064 0.2522± 0.0273 1.0004± 0.1880 0.3264± 0.0237 15.3385± 1.8402 0.8719± 0.0618

Montreal 0.0171± 0.0008 0.0164± 0.0001 0.0523± 0.0350 0.0632± 0.0065 2.0585± 0.0947 0.5028± 0.0120
Newsgroups 0.0219± 0.0006 0.0227± 0.0000 0.1757± 0.0215 0.1163± 0.0344 6.8089± 0.7869 0.8551± 0.0527

Spam 0.0230± 0.0004 0.0235± 0.0012 0.3039± 0.0419 0.1262± 0.0381 6.8448± 0.7796 0.7146± 0.0453
Yale 0.0884± 0.0003 0.0984± 0.0064 0.3774± 0.0181 0.1381± 0.0072 5.5177± 0.1645 0.6410± 0.0223

NB-VAE Isomap DLA-GPLVM Poisson RFLVM Neg. binom. RFLVM Multinomial RFLVM

Bridges 0.0867± 0.0157 0.0098± 0.0018 0.5182± 0.0206 0.3318± 0.0135 0.4915± 0.0502 0.5715± 0.0473
CIFAR-10 2.1002± 0.0594 0.4366± 0.0034 69.7889± 4.2406 22.9299± 1.2624 55.6701± 2.6837 59.8926± 9.9910
Congress 1.5898± 0.0725 0.0236± 0.0005 45.8584± 22.9771 9.8935± 0.1041 20.4514± 0.3995 94.0656± 2.7319
MNIST 2.1104± 0.1020 0.2148± 0.0019 26.4795± 1.5429 17.8148± 0.0493 33.8967± 4.1385 74.3100± 2.1778

Montreal 0.0819± 0.0009 0.0080± 0.0001 0.8723± 0.0237 0.5006± 0.0143 0.9291± 0.0434 0.8769± 0.0376
Newsgroups 0.7432± 0.0248 0.0721± 0.0008 1088.2659± 35.5089 2.6502± 0.4063 3.2600± 0.0892 2.8393± 0.1525

Spam 1.8411± 0.0283 0.0795± 0.0036 440.5963± 26.7444 10.6939± 0.4018 17.9958± 2.8573 19.0018± 2.4612
Yale 0.7931± 0.0589 0.0402± 0.0026 6.7210± 0.1193 9.8992± 0.5530 21.6030± 0.8839 45.4209± 4.4139
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Chapter 5

Active multi-fidelity Bayesian online

changepoint detection

Online algorithms for detecting changepoints, or abrupt shifts in the behavior of a time series,

are often deployed with limited resources, e.g., to edge computing settings such as mobile

phones or industrial sensors. In these scenarios, it may be beneficial to trade the cost of

collecting an environmental measurement against the quality or fidelity of this measurement

and how the measurement affects changepoint estimation. For instance, one might decide

between inertial measurements or GPS to determine changepoints for motion. A Bayesian

approach to changepoint detection [Adams and MacKay, 2007, Fearnhead and Liu, 2007]

is particularly appealing because we can represent our posterior uncertainty about change-

points and make active, cost-sensitive decisions about data fidelity to reduce this posterior

uncertainty. Moreover, the total cost could be dramatically lowered through active fidelity

switching, while remaining robust to changes in data distribution. In this chapter, I present

active multi-fidelity Bayesian online changepoint detection (MF-BOCD). MF-BOCD is a

multi-fidelity approach that makes cost-sensitive decisions about which data fidelity to col-

lect based on maximizing information gain with respect to changepoints. We evaluate this

framework on synthetic, video, and audio data and show that this information-based ap-

proach results in accurate predictions while reducing total cost.
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5.1 Introduction

Sequential data are rarely stationary. For example, a stock’s volatility might increase or a

text stream’s topics might shift due to world events. A changepoint is an abrupt change

in the generative parameters of sequential data. The goal of changepoint detection is to

discover these structural changes, and thereby partition the data into regimes. Changepoint

detection is a broad class of algorithms, including the classic CUSUM algorithm [Page,

1954], hidden Markov models with a changing transition matrix [Braun and Muller, 1998],

Poisson processes with varying rates [Ritov et al., 2002], two-phase linear regression [Lund

and Reeves, 2002], and Gaussian process changepoint models [Saatçi et al., 2010]. The

Bayesian approach is appealing due to the ability to specify priors and represent posterior

uncertainty [Chib, 1998, Fearnhead, 2006, Chopin, 2007]. For streaming applications, exact

filtering algorithms allow for online Bayesian detection of changepoints without retrospective

smoothing [Fearnhead and Liu, 2007, Adams and MacKay, 2007].

Many applications of online changepoint detection are in real-time settings with limited

resources for sensing and computation, such as content delivery networks [Akhtar et al.,

2018], autonomous vehicles [Ferguson et al., 2015], and smart home and internet-of-things

devices [Aminikhanghahi et al., 2018, Lee et al., 2018, Munir et al., 2019]. In such resource-

constrained settings, the observations for a changepoint detector are typically environmental

measurements, for example heart-rate data [Villarroel et al., 2017]. Trading the cost of

collecting these data against their quality or fidelity may be useful, depending on how these

fidelities affect changepoint estimation.

For example, since scaling up neural network capacity is an effective approach to im-

proving model performance [Arora et al., 2018, Kaplan et al., 2020, Mahajan et al., 2018], a

high-fidelity observation model might be a large but expensive-to-evaluate neural network.

Retraining a smaller architecture or using compression algorithms such as distillation [Hin-

ton et al., 2015], quantization [Gong et al., 2014, Hubara et al., 2017], or pruning [Frankle

and Carbin, 2018] could produce a low-fidelity observation model. If the output of these

neural networks is the input to a changepoint detector, then the fidelity of the networks will

impact the quality of changepoint detection.
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In such situations, the cost of Bayesian online changepoint detection (BOCD) could be

reduced by making decisions about the fidelity of the observations. One view of BOCD is as

a model-based version of an exponentially-weighted moving average, estimating the weights

from data rather than selecting them a priori. It determines which of the recent data matter

for the current state. This view motivates our multi-fidelity approach: if changepoints are

easily identified and the data can be partitioned into stationary regimes, there is no need for

expensive high-fidelity observations when BOCD’s posterior confidence about changepoints

is high.

In our framing of the problem, we must choose which data fidelity to use and pay a

fixed cost to make this choice. In the neural network example, we can evaluate either an

expensive or cheap neural network to obtain a high- or low-fidelity representation of a raw

measurement. To make this choice, we propose an information-theoretic approach, similar

to the active data collection strategy proposed by MacKay [1992] and to approaches used in

Bayesian optimization [Hernández-Lobato et al., 2014], preference learning [Houlsby et al.,

2012], and Bayesian quadrature [Gessner et al., 2020]. We choose the data fidelity with

maximal information rate (gain over cost) for the posterior distribution over changepoints.

This results in policies that use lower-fidelity data in regimes with higher posterior certainty.

Contributions: First, we formulate a new version of an important problem: online change-

point detection with multiple data sources of varying cost and quality. The task is to choose

which fidelity to use at each time point to make accurate predictions while minimizing

costs. Second, we propose active selection of each datum’s fidelity based on the expected

informativeness of observations from each fidelity, and choose the one that maximizes the

information rate for the posterior distribution over changepoints. Finally, we demonstrate

the empirical performance of our algorithm on both synthetic and real-world data. We show

that in many real-world scenarios, despite the extra step of computing information gain, our

model reduces the total computational budget while maintaining good predictive accuracy.
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5.2 Background

We begin by reviewing the BOCD algorithm [Adams and MacKay, 2007, Fearnhead and

Liu, 2007]. Our data are a contiguous sequence of observations in time, X1:T := {x1, . . . ,xT}

where xt ∈ RD. Assume that the data can be partitioned such that, within each partition,

the data are i.i.d. and governed by partition-specific parameters θ [Barry and Hartigan,

1992]. The transition from one partition into another results in an abrupt change from one

set of parameters to another. This transition is referred to as a changepoint.

Denote the parameters at time t as θt. In the changepoint process, these parameters

are determined in one of two ways: either a changepoint has occurred at time t, in which

case the parameters are drawn afresh from a prior distribution Π, or a changepoint has not

occurred and the parameters are θt = θt−1, i.e., they stay the same. We model the arrival

of changepoints as a discrete time Bernoulli process with hazard rate 1/β, resulting in a

geometric distribution over partition lengths with mean β ∈ R>0.

In the online setting, the primary quantity of interest is the time since the last change-

point, which we refer to as the run length. We denote the run length at time t as rt,

which takes values in the non-negative integers. Thus, a changepoint at t means rt = 0.

At time t, the BOCD algorithm estimates the posterior marginal distribution over the run

length p(rt|X1:t). We refer to this distribution as the run-length posterior. Online updating

of the run-length posterior is made easy via a recursion that is essentially the same as the

message-passing (dynamic programming) approach to hidden Markov models, particularly

the forward algorithm [Baum and Petrie, 1966, Rabiner, 1989]. (See Section 5A.1 for a
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discussion of the forward–backward algorithm.) Here, the filtering recursion is:

p(rt | X1:t) ∝ p(rt,X1:t)

=
∑
rt−1

p(rt,xt | rt−1,X1:t−1)p(rt−1,X1:t−1)

=
∑
rt−1

p(rt | rt−1,���
�X1:t−1)p(xt | rt,���rt−1,X1:t−1)p(rt−1,X1:t−1)

=
∑
rt−1

p(rt | rt−1)︸ ︷︷ ︸
Bernoulli

process prior

p(xt | rt,X1:t−1)︸ ︷︷ ︸
Posterior
predictive

p(rt−1,X1:t−1),︸ ︷︷ ︸
Previous
estimate

(5.1)

where the cancellations arise from Markovian assumptions we have made: 1) the probability

of a changepoint at time t is independent of data before t, given knowledge of rt−1, and 2) the

predictive distribution over the data xt at time t is independent of past run lengths, given

knowledge of the current run length rt. The three terms within the sum have a convenient

interpretation as the prior, the predictive distribution, and the estimated joint distribution

from the previous time step. These are the only ingredients necessary for a straightforward

online filtering algorithm.

The Bernoulli process prior above is in an unconventional form that represents the time

since the last changepoint:

p(rt | rt−1) =


1/β if rt = 0,

1− 1/β if rt = rt−1 + 1,

0 otherwise.

(5.2)

In other words, the run length rt must either increase by one from the previous time point

or drop to zero.

The construction so far has not depended on the specifics of the data-generating distribu-

tion Pθt , which appears as a part of the posterior predictive distribution in Equation (5.1):

p(xt | rt = `,X1:t−1) =

∫
Θ

pθt(xt)π(θt | X(`)) dθt , (5.3)
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where pθt(·) is the probability density function associated with the distribution Pθt , π(θ | ·)

is the probability density function associated with the posterior distribution w.r.t. θ,

and X(`) := Xt−`:t−1 denotes the most recent ` data. This is a key property of the BOCD

algorithm: conditioning on rt = ` means that only the most recent ` data need to be ac-

counted for in the posterior distribution. When the data distribution Pθt is chosen to allow

for a conjugate prior for Π, then the computations necessary for the recursion are relatively

simple: it is only necessary to maintain a set of sufficient statistics for each rt hypothe-

sis. These statistics can be easily updated via addition, and the posterior predictive is often

available in closed form. (See Adams and MacKay [2007] for further discussion.) When more

complicated models are used, approximate inference or numerical integration are necessary.

Given the run-length posterior, we can compute a predictive distribution to make online

predictions that are robust to changepoints by marginalizing out the run length, i.e., by

computing a mixture of posterior predictive distributions—which are already available from

the recursion—under the run-length posterior:

p(xt+1 | X1:t) = Ep(rt|X1:t)[p(xt+1 | rt = `,X(`))] . (5.4)

Equation (5.4) underscores the value of modeling the run-length in this construction: it

provides a model-based approach to decide which data are currently relevant for predicting

the next observation. That is, the value of rt explicitly captures the size of the current

partition, i.e., what recent data share the same parameters.

The basic framework for BOCD has been extended in a number of ways, such as learning

the changepoint prior [Wilson et al., 2010], adding Thompson sampling for multi-armed

bandits with changing rewards [Mellor and Shapiro, 2013], estimating uncertainty bounds

on the number and location of changepoints [Ruggieri and Antonellis, 2016], and using

β-divergences for robustness against outliers [Knoblauch et al., 2018]. While changepoint

detection has been explored in the context of active data selection [Osborne et al., 2010,

Hayashi et al., 2019], to our knowledge, the BOCD framework has not been considered in

multi-fidelity settings.
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Figure 5.3.1: MF-posteriors π(θT | D1:T ) for varying low-fidelity weight ζLF ∈ {0, 0.5, 0.9}
but fixed high-fidelity weight ζHF = 1. The data are T = 20 i.i.d. samples xt ∼ N (1, 1).
The prior is π(θ) = N (0, 3). Within each panel, the percentage of (low-fidelity) weighted
data likelihoods (LF%) varies. When ζLF = 0 and LF% = 100, (left panel, orange curve)
the MF-posterior reduces to the prior π(θ). The MF-posterior becomes more concentrated
when either ζLF increases (right two panels) or LF% decreases (blue curves).

5.3 Multi-fidelity changepoint detection

We now extend the BOCD framework to the multi-fidelity setting, referring to our algorithm

as MF-BOCD. Our central assumption is that, at any time point t, we choose the quality

of our observation, with higher fidelity (lower noise) having greater cost. We generally take

this cost to be computational, but it could also be quantified in terms of resources such

as money or energy. Given the selected data fidelities, we can again recursively compute

a run-length posterior (Section 5.3.2). Given this multi-fidelity run-length posterior, the

algorithm then selects the data fidelity that maximizes a cost-sensitive information rate

objective (Section 5.3.4).

5.3.1. Multi-fidelity posterior predictive

Again, suppose we have a distribution Pθt and prior Π, and the task is to estimate the param-

eter θt in the presence of changepoints. Our data are again the contiguous sequence X1:T .

However, we now assume each observation xt has an associated value ζt ∈ [0, 1], which

we call the fidelity. The fidelities z1:T := {ζ1, . . . , ζT} are non-random and take values from

a set Z. In the experiments, we only consider the case when the cardinality of Z is two,
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i.e., we only have low- and high-fidelities, but this is not a necessary restriction. Let our

sequence of observations and chosen fidelities be D1:T := {(x1, ζ1), . . . , (xT , ζT )}. The role

of the fidelity ζt is to re-weight the associated probability function pθt(x) in a multi-fidelity

posterior (MF-posterior). At time t, the MF-posterior is:

π(θt | D1:t) ∝ π(θt)
t∏
i=1

pθt(xi)
ζi . (5.5)

Here, π(·) is the probability density function associated with the prior distribution Π.

Intuitively, the effect of data re-weighting on the MF-posterior is a density that concen-

trates as if the contribution of T samples were
∑T

t=1 ζt number of data points instead of T

data points. Figure 5.3.1 illustrates the MF-posterior of a conjugate Gaussian model with

known variance (discussed in Section 5.3.3). Here the data are generated from a standard

normal distribution, and the MF-posterior π(θT | D1:T ) is visualized for varying ζLF and

fixed ζHF = 1. As ζLF decreases, the MF-posterior becomes less concentrated with a larger

variance and increased influence from the prior.

Re-weighting terms in the likelihood has been considered under various names, such

as safe Bayes [Heide et al., 2020, Grünwald et al., 2017], generalized posteriors [Walker and

Hjort, 2001, Bissiri et al., 2016], coarsened posteriors [Miller and Dunson, 2018], and Bayesian

data re-weighting [Wang et al., 2017]. In our framing of this model, we must choose each

fidelity ζt of our observation xt, paying a fixed cost to make this choice.

When using a member of the exponential family with a conjugate prior, one has ana-

lytical expressions of the MF-posterior and MF-posterior predictive distributions. Let the

distributions on x and θt have the following functional forms:

pθt(x) = h1(x) exp
{
θ>t u(x)− a1(θt)

}
, (5.6)

πχ,ν(θt) = h2(θt) exp
{
θ>t χ− νa1(θt)− a2(χ, ν)

}
, (5.7)

where, using exponential family terminology, θt are now natural parameters, u(x) are suffi-

cient statistics, a1(·) and a2(·, ·) are log normalizers, and h1(·) and h2(·) are base measures.
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Then the MF-posterior is

πχ,ν(θt)
t∏
i=1

pθt(xi)
ζi ∝ h2(θt) exp

{
θ>t χt − νta1(θt)

}
, (5.8)

where χt := χ+
∑t

i=1 ζiu(xi) and νt := ν+
∑t

i=1 ζi. The effect of the ζi < 1 is to down-weight

the sufficient statistics of xi. When ζi = 1 for all i, Equation (5.8) reduces to the standard

posterior for exponential family models.

We can now construct a multi-fidelity version of Equation (5.3): a posterior predictive

distribution that depends on data fidelities. Let D(`) := Dt−`:t−1 denote the most recent `

data and associated fidelities (i.e., run length rt = `), and let the associated parameter

estimates be:

χ` := χ+
t−1∑
τ=t−`

ζτu(xτ ), ν` := ν +
t−1∑
τ=t−`

ζτ . (5.9)

Then the MF-posterior predictive is

p(xt | rt = `, ζt,D
(`)) =

∫
Θ

pθt(xt)
ζtπ(θt | D(`))dθt

= h1(xt)
ζt

exp(a2(ζtu(xt)+χ`, ζt + ν`))

exp(a2(χ`, ν`))
, (5.10)

provided h1(xi)
ζi induces a distribution whose normalizer we can compute. See Section 5A.2

for a proof. Equation (5.10) can be interpreted as a traditional posterior predictive dis-

tribution for exponential family models but with the sufficient statistics weighted by the

fidelities. Since BOCD is amenable to fast online updates for exponential families, inference

using fidelities is often no harder than using the ordinary posterior.

Note that for some multi-fidelity models, the MF-posterior p(θt | rt = `,D(`)) may not

have an analytic form even when p(θt | X(`)) does. In this chapter, we only consider models

in the exponential family, since this restriction often allows for efficient online updates. How-

ever, our approach may also extend to conditionally conjugate models (see Miller and Dunson

[2018] for a discussion); in such settings, we could apply online variational inference to ap-

proximate predictive distributions [Turner et al., 2013]. As in standard BOCD, computing

this predictive distribution without conjugate priors requires numerical approximations.
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5.3.2. Multi-fidelity run-length posterior estimation

To accommodate multi-fidelity observations, we must modify the online posterior estimation

procedure for the run lengths. We now condition the recursion on both the observations and

data fidelities:

p(rt = ` | D1:t) ∝ p(rt,X1:t | z1:t)

=
∑
rt−1

p(rt | rt−1)p(xt | rt, ζt,D(`))p(rt−1,X1:t−1 | z1:t−1).
(5.11)

Similar to Equation (5.1), in the multi-fidelity case, the joint distribution of Equation (5.11)

decomposes into a changepoint prior p(rt | rt−1), a predictive distribution, and the previous

message. The latter two are now conditioned on fidelities. Thus, we can efficiently update

the run length posterior in a recursive manner.

5.3.3. Examples

Before discussing how we choose fidelities, we demonstrate our approach with two examples

of multi-fidelity models, which we use in Section 5.4. To simplify notation, we ignore the

run length in this section, since it only specifies which data need to be accounted for in the

MF-posterior distribution. See Section 5A.2 for more detailed derivations.

Multi-fidelity Gaussian. Consider a univariate Gaussian model1 with known variance σ2
x,

xi
iid∼ N (θt, σ

2
x), θt ∼ N (µ0, σ

2
0). (5.12)

The multi-fidelity likelihood is

t∏
i=1

pθt(xi)
ζi ∝

t∏
i=1

exp

{
− ζi

2σ2
x

(xi − θt)2

}
, (5.13)

1It is straightforward to extend this result to the multivariate Gaussian.
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and the MF-posterior is the product of t+ 1 independent Gaussian densities, which is again

a Gaussian:

π(θt | D1:t) ∝ N (θt | µ0, σ
2
0)

t∏
i=1

N (xi | θt, σ2
x/ζi)

∝ N (θt | µt, σ2
t ),

(5.14)

where

1

σ2
t

:=
1

σ2
0

+
t∑
i=1

ζi
σ2
x

, µt := σ2
t

(
µ0

σ2
0

+
t∑
i=1

ζixi
σ2
x

)
. (5.15)

The MF-posterior predictive distribution can be computed by integrating out θt. This is a

convolution of two Gaussians—the posterior in Equation (5.14) and the prior π(θt)—which

is again Gaussian:

p(xt+1 | ζt+1,D1:t) = N
(
xt+1

∣∣∣µt, σ2
x

ζt+1

+σ2
t

)
. (5.16)

In this example, the fidelity ζi has the natural interpretation of increasing the posterior

variance when ζi < 1. In Equation (5.11), this has the effect that the multi-fidelity run

length posterior is less concentrated. Any confidence in a changepoint is by definition lower.

Multi-fidelity Bernoulli. Consider a Bernoulli model,

xi
iid∼ Bernoulli(θt), θt ∼ Beta(α0, β0). (5.17)

The MF-posterior is proportional to a beta distribution π(θt | D1:t) = Beta(αt, βt) with

parameters

αt := α0 +
t∑
i=1

ζixi, βt := β0 +
t∑
i=1

ζi(1− xi). (5.18)

The multi-fidelity posterior predictive distribution is the same as for a standard beta–

Bernoulli model with αt and βt and additional re-weighting due to ζt+1:

p(xt+1 | ζt+1,D1:t) =
B (ζt+1xt+1 + αt, ζt+1(1− xt+1) + βt)

B(αt, βt)
, (5.19)
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where B(·, ·) is the beta function. When ζi < 1, the fidelity has the natural effect of discount-

ing count observations. (See Section 2.3.2 for a discussion of the single-fidelity beta–Bernoulli

model.)

5.3.4. Active fidelity selection

So far, we have only discussed modeling data with multiple fidelities. However, in our framing

of the problem, we must actively decide the fidelity of our observation xt, i.e., we must

pick ζt ∈ Z. We propose maximizing the information rate of the multi-fidelity run length

distribution. After observing D1:t−1 observations and fidelities, our current information

about rt is the Shannon entropy H[p(rt | D1:t−1)]. Since we must choose a fidelity without

observing xt, we want to choose the one that minimizes the expected entropy with respect

to the predictive distribution in Equation (5.4). Thus, we choose the fidelity that maximizes

the information gain of the run length posterior. The utility of ζt is therefore

U(ζt) = H[rt | D1:t−1]− Ext [H[rt | D1:t−1,xt, ζt]]. (5.20)

At time t, the left term in Equation (5.20) is easy to compute, since we have already computed

the posterior distribution p(rt−1 | D1:t−1). We simply roll our estimation forward in time

according to the changepoint process and without conditioning on new data. Furthermore,

this value is the same for all fidelities, and therefore an equivalent formulation is to minimize

the expected run length entropy, the right term in Equation (5.20). This entropy term is

easy to compute because it is with respect to a discrete distribution that we can estimate at

time t. The expectation is with respect to the predictive distribution (Equation (5.4)) and

must be approximated in general.

However, we are not interested in the fidelity that just maximizes information gain regard-

less of cost. If this were the case, we would simply always use the highest fidelity. Let λ(ζt)

denote the cost of fidelity ζt. In general, λ(·) could be a function of the input domain, but

here we assume it is a scalar constant that is known, e.g., wall-time, energy usage, or floating

point operations. Then the information rate of fidelity ζt at time t is α(ζt) := U(ζt)/λ(ζt).

However, given the interaction of fixed costs and estimated fidelities, it is possible that the
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maximum information rate is always achieved using the highest (or lowest) fidelity. In this

case, we may still want some amount of low-fidelity (or high-fidelity) usage depending on data

set size and computational budget. To address this, consider arbitrary weights w(ζt) ≥ 0.

Our decision rule is then: use fidelity ζ?t that maximizes the weighted information rate:

ζ?t := argmax
ζt∈Z

w(ζt)α(ζt). (5.21)

Note that the weights can be tuned on held-out data to achieve a desired expected bud-

get. Introducing weights is useful because we do not lose λ(ζt), which may represent an

interpretable quantity such as floating point operations.

5.3.5. Practical considerations

Analyzing costs. Since we are motivated by real-time decision-making, a sensible question

is whether our decision-making algorithm is cheaper than using only high-fidelity observa-

tions. Here, we give a complete example of the cost for the beta–Bernoulli model. Since the

predictive distribution is easy to work with, a useful reformulation of Equation (5.20) is

U(ζt) = H[xt | D1:t−1]− Ert [H[xt | D1:t−1, rt, ζt]], (5.22)

which uses the symmetry of information gain. (See Section 5A.3 for a proof.) At time t, the

cost in floating point operations (flops) of computing Equation (5.22) is 32t + 1 flops. The

cost grows linearly with time because computing information gain requires summing over

the run length posterior p(rt | D1:t−1), and the support of this distribution grows linearly

with time. However, Fearnhead and Liu [2007] proposed an optimal resampling algorithm,

similar to particle filtering, that enables efficient approximate inference. This allows for a

fixed cost to compute information gain. For example, with 10,000 particles, computing the

information gain for the Bernoulli model requires 0.32 million flops. For comparison, consider

MobileNets, which are a class of efficient neural networks designed for mobile and embedded

vision applications [Howard et al., 2017]. The smallest reported MobileNet requires 41 million

multi-adds (82 million flops). Thus, computing the beta–Bernoulli information gain twice
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(when the cardinality of Z is 2) is 140 times cheaper than evaluating the smallest MobileNet,

while still using 10,000 particles in the run length posterior estimation.

Estimating fidelities in Z. A second practical consideration is estimating the ζ values

in Z. In the Gaussian case with known variance σ2
x, we can estimate ζ/σ2

x using the sample

variance of held-out data and then calculate the value for ζ. In the Bernoulli case, we use

model accuracy as a proxy for ζ. For example, if a binary classifier has a true positive rate

of 90%, we treat an observation of 1 as a 0.9 using ζ = 0.9.

5.4 Experiments

In this section, we empirically evaluate our algorithm on synthetic, video, and audio data,

and compare performance of MF-BOCD against BOCD using only low- or high-fidelity data,

as well as a randomized baseline. Please see Section 5A.4 for didactic code and the repository

for a complete implementation.2

To evaluate our framework, we define two metrics. Let X̄1:T := {x̄1, . . . , x̄T} denote the

mean of the predictive distribution, Equation (5.4), of BOCD or MF-BOCD for all time

points. Then the reported mean squared error (MSE) is between X̄1:T from the evaluated

model and X̄1:T from BOCD using only high-fidelity data. Now let R1:T denote a lower

triangular matrix denoting the run length posterior at all time points. The L1 distance

is between R1:T from the evaluated model and R1:T from BOCD using only high-fidelity

data. In other words, for both metrics, we compare the evaluated model to the best it could

have done in practice. As a baseline, we compare MF-BOCD with a model that randomly

switches between fidelities and which uses roughly the same percentage of high-fidelity data

as MF-BOCD. This comparison isolates the question: is it when a multi-fidelity model uses

high-fidelity data that improves performance or just the presence of high-fidelity data at all?

2https://github.com/gwgundersen/mf-bocd
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Figure 5.4.1: Comparison of two multi-fidelity models. Orange x marks and blue circles
denote low- and high-fidelity data respectively. (Left two panels) A multi-fidelity model
with random switching between fidelities. The probability of switching to low-fidelity data
was chosen to be the fraction of low-fidelity observations used in the experiment in the right
column. (Right two panels) A multi-fidelity model that actively selects the fidelity based on
information rate.

5.4.1. Numerical experiments

The purpose of these experiments is to demonstrate that information rate is a useful decision

rule and to build intuition about the model’s behavior in a controlled setting. Consider a

synthetic univariate signal with two fidelities. We assume data are i.i.d. Gaussian within each

partition, and we use the Gaussian multi-fidelity model described in Section 5.3.3. When

a changepoint occurs, the parameter θt is drawn from a prior N (1, 3). The data is then

drawn from a distribution xt ∼ N (θt, ζ/σ
2
x) where σ2

x = 1. Our fidelities are from the set

Z = {ζHF, ζLF}. We set the higher fidelity to ζHF = 1 and the lower fidelity to ζLF = 1/2.

Thus, low-fidelity data have twice the variance. Costs are arbitrary in this setting, and we

set them to λ(ζHF) = 2 and λ(ζLF) = 1. We simulated the data using T = 500 observations

with a changepoint prior with 1/β = 1/100.

This experiment illustrates information rate as a decision rule as described in Sec-

tion 5.3.4. In regions in which the model is confident about the run length posterior,

low-fidelity data is preferred because both fidelities provide sufficient information. However,

when the model is uncertain about the run length posterior, the high-fidelity observations are

preferred (Figure 5.4.1). In contrast to information-based switching, the multi-fidelity model

with random switching has both higher MSE and L1 metrics. This suggests that while just

using some high-fidelity data is useful, choosing when to use that high-fidelity data can im-
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prove performance. While this result is illustrative, we also include two randomized ablation

experiments in Section 5A.5.

5.4.2. Cambridge video data

The numerical experiments provide a useful illustration of the role of information gain in

a controlled setting. However, the fidelities and costs are contrived. In this section, we

present a complete example of MF-BOCD with observation models and associated costs for

the purpose of real-time detection of changepoints in streaming video data.

The Cambridge-driving Labeled Video Database (CamVid) is a collection of over ten

minutes of video footage with object class semantic labels from 32 classes [Brostow et al.,

2009]. The videos have been manually labeled at 1 frame per second, for just over 700

images. Each frame is 320 × 480 pixels. For observation models, we used pretrained V3

MobileNets [Howard et al., 2017, 2019]. The high-fidelity model is larger and more accurate

(Table 5A.6.1).

The output of each observation model is a segmentation mask, which we converted to

a binary signal depending on whether or not a given class is in the image. In particular,

we used the “fence” signal because fences go in and out of the frame but typically remain

in a sequence of frames for a brief period. We then fit the multi-fidelity Bernoulli model

(Section 5.3.3) to the CamVid test set. We used the predictive version of information gain,

Equation (5.22). We arbitrarily set the low-fidelity model’s cost to 1 and the high-fidelity

model’s cost as function of that, 36.7/19.5 ≈ 1.9, using the number of flops (in billions)

as a proxy for cost (Table 5A.6.1). The high-fidelity model used ζHF = 1. The low-fidelity

model’s fidelity is a function of the difference in mean intersection-over-union for each model,

ζLF = 1− (0.723− 0.674) ≈ 0.95.

We found that the output of low- and high-capacity neural networks were a reasonable

proxy for low- and high-fidelity data. Standard BOCD using only high-fidelity observations

estimates a run-length posterior that captures more groundtruth changepoints and has a

predictive mean with smaller MSE and L1 distance than BOCD using only low-fidelity data.

The multi-fidelity model’s decision-rule weights were tuned to approximate a total computa-

tional cost of 50% low-fidelity data using cross-validation data, and the randomized approach
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Figure 5.4.2: MF-BOCD on CamVid video stream. (Top three rows) A sequence of video
frames as a camera-mounted vehicle approaches a bridge with fences on either side. The
high- and low-fidelity masks are shown in middle and bottom rows respectively. A solid
black frame indicates which fidelity was used by MF-BOCD. (Main center row) Binarized
output from MobileNets for high-, low-, and multi-fidelity models. The solid black lines are
predictive means. (Bottom row) Run length posteriors along with changepoints manually
labeled from the groundtruth masks.

flips a fair coin to choose the data fidelity. On test data, MF-BOCD estimated a run length

posterior that still closely matched the high-fidelity run-length posterior (Figure 5.4.2). The

information-based approach results in a better predictive mean (MSE) and better run length

posterior estimation (L1 distance) than both the low-fidelity and randomized versions.

Finally, we estimated the computational cost of MF-BOCD relative to baselines. With

roughly 50% low-fidelity data, the costs in billions of flops for MF-BOCD was 4827, for

BOCD using just low-fidelity data was 3333, and for BOCD using just high-fidelity data

was 6303. The cost of decision-making was marginal, requiring 0.00046 billion flops. (See-

Section 5A.6 for details on these calculations.) As these calculations demonstrate, making a

decision between high- and low-capacity neural networks can be significantly cheaper than

evaluating either model. So while random usage of low-fidelity data is a reasonable ap-

proach to lowering the computational budget, decision-making can improve inference and

predictions with marginal added cost.
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Figure 5.4.3: Comparison of information-based versus random switching on the MIMII data
set. Under the line is better for MF-BOCD. See Table 5.4.1 for means and standard errors.

5.4.3. MIMII audio data

Next, we evaluated MF-BOCD on the sound data set for Malfunctioning Industrial Machine

Investigation and Inspection (MIMII) [Purohit et al., 2019]. The raw data are 10-second

audio clips recorded from 4 different industrial machines (slide rails in this experiment)

during either normal or anomalous operation. For example, anomalous conditions might

involve rail damage, a loose belt, or no grease. The high-fidelity observation model is a

depth-wise separable convolutional neural network (MicroNets) [Banbury et al., 2020]. The

low-fidelity observation model is a two-layer fully-connected neural network. Both models

take frames of log-Mel spectrograms of audio signals as inputs and return an anomaly score

as output. They were pretrained on audio clips of normal behavior. Then each 10-second test

set clip was converted to 14 anomaly scores using these observation models. The anomaly

score is a number between 0 and 1, with 0 indicating normal. We thresholded the anomaly

scores to produce binary labels. We picked machine- and model-specific thesholds using

ROC curves. (See Section 5A.6 for details.)

To randomly generate audio files with changepoints, we sampled a sequence of Bernoulli

random variables y1:T . Then for each yt, we chose a normal (anomalous) audio clip uniformly
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at random with replacement if yt = 0 (yt = 1). We converted clips to low- (high-) fidelity

data by evaluating the low- (high-) neural network and computing the median anomaly score

for that clip. As in Section 5.4.2, we used a Bernoulli model with ζHF = 1 and ζLF set to the

low-fidelity model’s true positive rate relative to the high-fidelity model. For each machine,

we randomly generated 500 data sets with changepoints and computed the MSE and L1

distances for low-fidelity BOCD and for MF-BOCD with both random and information-

based switching. We found that the information-based approach to switching had lower

MSE and L1 distance than BOCD using just low-fidelity data and had better performance

than randomized switching on the first three machines (Table 5.4.1). An interesting negative

result is that MF-BOCD does not do significantly better than random on machine 4. We

hypothesize that this is due to the poor quality of the low-fidelity observation model, which

has an AUC < 0.5 (Figure 5A.6.3). With these data, MF-BOCD is making hard decisions

(argmax) with bad information. And in general, a randomized approach can sometimes do

well (Figure 5.4.3). An interesting direction for future work would be to soften the decision

rule via sampling, perhaps controlled by a temperature.

As in the CamVid experiments, we found that the total cost of decision-making was

marginal; the neural network costs dominated the calculations (Table 5.4.1). Thus, MF-

BOCD offers a useful way to trade off detection accuracy for computational savings.

5.5 Discussion

We have extended Bayesian online changepoint detection to the multi-fidelity setting in which

observations have associated fidelities and costs. We found that choosing the data fidelity

based on maximal information rate with respect to the run-length posterior yields inter-

pretable policies that lower computational costs while still maintaining good performance in

terms of parameter and run-length posterior estimation. In simple models, decision-making

is cheap relative to the cost of evaluating even tiny neural networks designed for commodity

microcontrollers. Savings in number of operations can be translated to energy savings [Ban-

bury et al., 2020], which is crucial for resource-constrained applications.

While we focus on the online and resource-constrained setting, this framework could be

182



Table 5.4.1: Comparison between low-fidelity BOCD (LF), random switching (RN), and
MF-BOCD (IG). Mean and two standard errors were computed over 500 randomly gen-
erated MIMII data sets with changepoints, using the method described in the text. Cost
is in millions of flops. Bold numbers indicate statistically significant using 95% confidence
intervals. Reported %LF is the average across all data sets.

Machine 1 Machine 2 Machine 3 Machine 4

MSE
LF 0.0060 (0.0004) 0.0195 (0.0008) 0.0347 (0.0012) 0.1743 (0.0042)
RN 0.0026 (0.0002) 0.0063 (0.0004) 0.0126 (0.0006) 0.0411 (0.0028)
IG 0.0020 (0.0002) 0.0045 (0.0003) 0.0112 (0.0006) 0.0393 (0.0030)

L1

LF 101.87 (3.28) 167.73 (3.61) 192.49 (4.02) 242.85 (4.63)
RN 57.61 (3.14) 97.79 (3.66) 132.06 (3.63) 178.86 (4.97)
IG 61.79 (3.02) 92.98 (3.65) 130.17 (3.88) 173.27 (4.95)

Ops
LF 100 ” ” ”
RN 14447.58 16109.38 12867.76 13357.11
IG 14448.22 16110.02 12868.40 13357.74
HF 24940 ” ” ”

%LF 42 36 48 46

extended to scenarios in which observations take a long time to compute, such as change-

point detection in protein-folding [Fan et al., 2015] or engineering design [Robinson et al.,

2008]. In such settings, expensive approximations of the posterior predictive distribution

or information gain may be tolerable, as well as retrospective smoothing of the run-length

distributions.

Alternative decision rules should also be explored, as these will induce different policies.

Gessner et al. [2020] discuss how any monotonic transformation of Equation (5.21) gives

rise to the same policy because the global maximum is the same even if the value at that

maximum is not. However, this is not necessarily true after dividing the decision rule by

a cost. Furthermore, a probabilistic decision-rule might be useful in scenarios where the

difference between low- and high-fidelity observation models is marginal.
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5A Appendix

5A.1 Forward–backward algorithm

The Baum–Welch algorithm [Baum and Petrie, 1966] is a special case of EM (Section 2.2.1)

for hidden Markov models (HMMs). Baum–Welch uses the forward–backward algorithm in

the E-step. The goal of this section is to derive just the forward–backward algorithm, as it

is quite similar to the recursive algorithm used in BOCD (Equation (5.1)). For brevity, I

assume the reader is familiar with HMMs. Please see Bishop [2006] for a detailed description.

To introduce notation, let X := {x1, . . . ,xN} beN sequential observations where xn ∈ RD

and let Z := {z1, . . . , zN} denote the latent variables. Finally, let θ(t) denote the HMM

parameters (initial state probabilities, transition probabilities, and emission probabilities) at

EM iteration t. See Figure 5A.1.1 for the standard graphical model for an HMM.

The forward–backward algorithm computes the probabilities p(zn | X,θ(t)) and p(zn−1, zn |

X,θ(t)), which are required by the posterior moments in the expected complete log likelihood:

Ep(Z|X,θ(t))
[
log p(Z,X | θ(t))

]
= E [log p(z1)] + E

[
N∑
n=2

log p(zn | zn−1)

]
+ E

[
N∑
n=1

log p(xn | zn)

]
.

(5.23)

(For the remainder of the section, let’s ignore θ(t) since it is not necessary to understand the

main idea.) More specifically, the algorithm computes these two terms,

α(zn) := p(zn,X1:n) (forward pass), (5.24)

β(zn) := p(Xn+1:N | zn) (backward pass), (5.25)
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Figure 5A.1.1: Graphical model for a hidden Markov model. The hidden state variables
z1, . . . , zN follow a Markov process, while each observation xn is conditionally independent
from other data given its associated hidden state variable zn.

because the posterior mean and posterior second moment can be written using them. The

first moment requires

p(zn | X) =
p(X, zn)

p(X)

=
p(X1:n,Xn+1:N , zn)

p(X)

?
=
p(Xn+1:N | zn)p(zn,X1:n)

p(X)

=
α(zn)β(zn)

p(X)
.

(5.26)

And the second moment requires

p(zn−1, zn | X) =
p(X | zn−1, zn)p(zn−1, zn)

p(X)

=
p(X | zn−1, zn)p(zn−1, zn)

p(X)

?
=
p(x1:n−1 | zn−1)p(xn | zn)p(xn+1:N | zn)p(zn | zn−1)p(zn−1)

p(X)

=
α(zn−1)β(zn)p(xn | zn)p(zn | zn−1)

p(X)
.

(5.27)

In the steps labeled ?, we apply our modeling assumptions: that Z are Markov and that future

observations only depend on the current latent variable (Figure 5A.1.1). In the language of

HMMs, the forward–backward algorithm does both filtering (Figure 5A.1.2) and smoothing

(Figure 5A.1.3). Computing α(zn) is effectively filtering, and computing the first posterior
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Figure 5A.1.2: Filtering or posterior inference of zn given all the observations up until that
time point, x1, . . . ,xn.

Figure 5A.1.3: Smoothing or posterior inference of zn given all the observations x1, . . . ,xN .

moment is smoothing:

Filtering︷ ︸︸ ︷
p(zn | X1:n) ∝ p(zn,X1:n) = α(zn), (5.28)

Smoothing︷ ︸︸ ︷
p(zn | X) ∝ p(Xn+1:N | zn)p(zn,X1:n) = α(zn)β(zn). (5.29)

I think it’s fair to think of computing the posterior second moment as a kind of smoothing

as well. Now let’s look at the two passes.

5A.1.1. Forward pass

The main idea of the forward pass is to marginalize over the previous latent variable to de-

velop a recursive message-passing algorithm. This will allow us to use dynamic programming
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for efficient computation:

α(zn) = p(zn,X1:n)

=
∑
zn−1

p(zn, zn−1,X1:n)

=
∑
zn−1

p(zn, zn−1,xn,X1:n−1)

=
∑
zn−1

p(xn | zn,���zn−1,���
�X1:n−1)p(zn, zn−1,X1:n−1)

=
∑
zn−1

p(xn | zn)p(zn | zn−1,���
�X1:n−1)p(zn−1,X1:n−1)

= p(xn | zn)
∑
zn−1

p(zn | zn−1)α(zn−1).

(5.30)

Terms cancel due to modeling assumptions. Look at the graphical model (Figure 5A.1.1) for

the conditional dependence structure.

5A.1.2. Backward pass

The backward pass is a similar idea, but rather than marginalizing over the previous hidden

state, we marginalize over the next hidden state:

β(zn) = p(Xn+1:N | zn)

=
∑
zn+1

p(zn+1,Xn+1:N | zn)

=
∑
zn+1

p(zn+1,xn+1,xn+2:N | zn)

=
∑
zn+1

p(xn+2:N | zn+1,���xn+1,��zn)p(zn+1,xn+1 | zn)

=
∑
zn+1

p(xn+2:N | zn+1)p(xn+1 | zn+1,��zn)p(zn+1 | zn)

=
∑
zn+1

β(zn+1)p(xn+1 | zn+1,��zn)p(zn+1 | zn).

(5.31)
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Once again, this is a recursive algorithm in which we can message pass a previously computed

quantity backward.

5A.1.3. Initial conditions and evidence

Finally, we need to initialize our recursive algorithm. Since we compute the α(z) terms in a

forward filtering pass, we need a value for α(z1). This is easy to compute:

α(z1) = p(x1, z1) = p(x1 | z1)p(z1) =
K∏
k=1

{πkpφk(x1)}z1k , (5.32)

where πk is the initial probability of being on state k, and pφk(·) is the probability function

(emissions probability) for the kth distribution with parameters φk. In words, this is the

probability of x1 for each state, weighted by the initial probability of that state.

However, what are the initial conditions for β(zN)? Recall that the recursion starts at

the last observation since we compute the β(z) terms in reverse. Now notice that if we set

n = N and apply the definition of α(z) in Equation (5.26), we have

p(zN | X) =
p(zN ,X)β(zN)

p(X)
. (5.33)

Thus, it’s clear that β(zN) = 1 for each state k; otherwise, we would not have properly

normalized distributions.

Finally, we can compute the evidence by summing over both sides of Equation (5.26):

p(zn | X) =
α(zn)β(zn)

p(X)
K∑
k=1

p(zn = k | X) =
K∑
k=1

α(zn = k)β(zn = k)

p(X)

1 =
K∑
k=1

α(zn = k)β(zn = k)

p(X)

p(X) =
K∑
k=1

α(zn = k)β(zn = k).

(5.34)
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5A.2 Model derivations

5A.2.1. MF-posterior predictive for exponential family models

In multi-fidelity BOCD, we desire the posterior predictive distribution conditioned on the

run length,

p(xt | rt = `, ζt,Dt−`:t−1). (5.35)

Assume this is an exponential family model with the following likelihood and prior density

functions:

pθt(x) = h1(x) exp
{
θ>t u(x)− a1(θt)

}
, (5.36)

πχ,ν(θt) = h2(θt) exp
{
θ>t χ− νa1(θt)− a2(χ, ν)

}
. (5.37)

See Section 5.3 or Equation (5.7) for a description of these terms. We introduce the follow-

ing notation to denote the data and parameter estimates for the previous ` observations,

associated with the run length hypothesis rt = `:

D(`) := Dt−`:t−1, (5.38)

χ` := χ+
t−1∑
τ=t−`

ζτu(xτ ), (5.39)

ν` := ν +
t−1∑
τ=t−`

ζτ . (5.40)

189



Then the posterior predictive is

p(xt | rt = `, ζt,D
(`))

=

∫
Θ

pθ(xt)
ζtπχ`,ν`(θ)dθ

=

∫
Θ

[h1(xt)]
ζt exp

{
θ>ζtu(xt)− ζta1(θ)

}
h2(θ) exp

{
θ>χ` − ν`a1(θ)− a2(χ`, ν`)

}
dθ

= [h1(xt)]
ζt

∫
Θ
h2(θ) exp

{
θ> [ζtu(xt) + χ`]− a1(θ) [ζt + ν`]

}
dθ

exp {a2(χ`, ν`)}
?
= [h1(xt)]

ζt
exp {a2(ζtu(xt) + χ`, ζt + ν`)}

exp {a2(χ`, ν`)}

= [h1(xt)]
ζt exp {a2(ζtu(xt) + χ`, ζt + ν`)− a2(χ`, ν`)}

(5.41)

Step ? follows from the previous line because we know the normalizer for the integral.

5A.2.2. Multi-fidelity Gaussian model

To simplify notation, we ignore the run length in this section, since it only specifies which data

need to be accounted for in the MF-posterior distribution. Consider a univariate Gaussian

model with known variance.

xi
iid∼ N (θt, σ

2
x), θt ∼ N (µ0, σ

2
0). (5.42)

The multi-fidelity likelihood is

t∏
i=1

pθt(xi)
ζi =

t∏
i=1

[
1√

2πσ2
x

exp

{
− 1

2σ2
x

(xi − θt)2

}]ζi
(5.43)

∝
t∏
i=1

exp

{
− ζi

2σ2
x

(xi − θt)2

}
(5.44)

When ζi < 1, the variance of N (xi | σ2
x/ζi) increases, and the fidelity hyperparameter has

the natural interpretation of increasing the variance of our model.

The multi-fidelity posterior is the product of t+ 1 independent Gaussian densities, which
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is itself Gaussian:

π(θt | D1:t) ∝ N (θt | µ0, σ
2
0)

t∏
i=1

N (xi | θt, σ2
x/ζi) (5.45)

∝ N (θt | µt, σ2
t ), (5.46)

where

1

σ2
t

:=
1

σ2
0

+
t∑
i=1

ζi
σ2
x

, (5.47)

µt := σ2
t

(
µ0

σ2
0

+
t∑
i=1

ζixi
σ2
x

)
. (5.48)

The MF-posterior predictive can be computed by integrating out θt. This is a convolution

of two Gaussians, the posterior in Equation (5.14) and the prior π(θ) = N (θ | µ0, σ
2
0), which

is again Gaussian:

p(xt+1 | ζt+1,D1:t) =

∫
Θ

[N (xt+1 | θt, σ2
x)]

ζt+1N (θt | µt, σ2
t )dθt (5.49)

= N
(
xt+1 | µt,

σ2
x

ζt+1

+ σ2
t

)
. (5.50)

With a single fidelity and ζ = 1, this results reduces to the standard result for Gaussian

models with known variance [Murphy, 2007].

5A.2.3. Multi-fidelity Bernoulli model

To simplify notation, we ignore the run length in this section, since it only specifies which

data need to be accounted for in the MF-posterior distribution. Consider a beta–Bernoulli

model

xi
iid∼ Bernoulli(θt), θt ∼ Beta(α0, β0). (5.51)
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The multi-fidelity likelihood is

t∏
i=1

pθt(xi)
ζi =

t∏
i=1

[
θxit (1− θt)1−xi

]ζi (5.52)

=
t∏
i=1

θζixit (1− θt)ζi(1−xi). (5.53)

Therefore the MF-posterior is

π(θt)
t∏
i=1

pθt(xi)
ζi ∝ 1

B(α0, β0)
θα0−1
t (1− θt)β0−1

t∏
i=1

θζixit (1− θt)ζi(1−xi) (5.54)

∝ θ
α0−1+

∑
t ζixi

t (1− θt)β0−1+
∑
t ζi−xiζi . (5.55)

So the MF-posterior is proportional to a beta distribution

π(θt | D1:t) = Beta(αt, βt), (5.56)

αt := α0 +
t∑
i=1

ζixi, (5.57)

βt := β0 +
t∑
i=1

ζi(1− xi). (5.58)

The MF-posterior predictive is:

p(xt+1 | ζt+1,D1:t)

=

∫ 1

0

pθt(xt+1)ζt+1p(θt | D1:t)dθt

=

∫ 1

0

(
θ
xt+1

t (1− θt)1−xt+1
)ζt+1

(
1

B(αt, βt)
θαt−1
t (1− θt)βt−1

)
dθt

=
1

B(αt, βt)

∫ 1

0

θ
ζt+1xt+1+αt−1
t (1− θt)ζt+1(1−xt+1)+βt−1dθt

=
B(αt + ζt+1xt+1, βt + ζt+1(1− xt+1))

B(αt, βt)
.

(5.59)

The last step as, as in the general case, depends on knowing the normalizer of the beta

distribution. Notice that the base measure h1(xt) of the Bernoulli distribution is one, and
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therefore [h1(xt)]
ζt = 1.

5A.3 Proof that mutual information is symmetric

The mutual information (MI) between two random variables captures how much information

entropy is obtained about one random variable by observing the other. Since that definition

does not specify which is the observed random variable, we might suspect this is a symmetric

quantity. In fact, it is. The goal of this section is to show why this definition is indeed

symmetric. The proof will highlight a useful interpretation of MI.

Let X and Y be continuous random variables with probability functions pX(x) and pY (y)

respectively. The MI of X and Y is

MI(X, Y )

= H[X]− EY [H[X | Y = y]]

= −
∫
x

pX(x) ln pX(x)dx+

∫
y

pY (y)

∫
x

pX|Y (x, y) ln pX|Y (x, y)dxdy

= −
∫
y

∫
x

pX,Y (x, y) ln pX(x)dxdy +

∫
y

pY (y)

∫
x

pX|Y (x, y) ln pX|Y (x, y)dxdy

= −
∫
y

∫
x

pX,Y (x, y) ln pX(x)dxdy +

∫
y

∫
x

pX,Y (x, y) ln pX|Y (x, y)dxdy

=

∫
y

∫
x

pX,Y (x, y)
(

ln pX|Y (x, y)− ln pX(x)
)

dxdy

=

∫
y

∫
x

pX,Y (x, y) ln

[
pX|Y (x, y)

pX(x)

]
dxdy

=

∫
y

∫
x

pX,Y (x, y) ln

[
pX|Y (x, y)

pX(x)
× pY (y)

pY (y)

]
dxdy

=

∫
y

∫
x

pX,Y (x, y) ln

[
pX,Y (x, y)

pX(x)pY (y)

]
dxdy

= DKL[pX,Y ‖pX ⊗ pY ].

(5.60)

Since the KL divergence is non-negative (Section 2A.2), mutual information is also non-

negative. Furthermore, the mutual information is zero if and only if X and Y are indepen-

dent. This makes intuitive sense: if two random variables are independent, observing one

tells you nothing about the other.
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Finally, it’s pretty easy to see that we can simply reverse our calculations to get the

mutual information of Y and X:

MI(Y,X)

= H[Y ]− EX [H[Y | X = x]]

= −
∫
y

pY (y) ln pY (y)dy +

∫
x

pX(x)

∫
y

pY |X(y, x) ln pY |X(y, x)dydx

= −
∫
x

∫
y

pX,Y (x, y) ln pY (y)dydx+

∫
x

pX(x)

∫
y

pY |X(y, x) ln pY |X(y, x)dydx

= −
∫
x

∫
y

pX,Y (x, y) ln pY (y)dydx+

∫
x

∫
y

pX,Y (x, y) ln pY |X(y, x)dydx

=

∫
x

∫
y

pX,Y (x, y)
(

ln pY |X(x, y)− ln pY (y)
)

dydx

=

∫
x

∫
y

pX,Y (x, y) ln

[
pY |X(x, y)

pY (y)

]
dydx

=

∫
x

∫
y

pX,Y (x, y) ln

[
pY |X(x, y)

pY (y)
× pX(x)

pX(x)

]
dydx

=

∫
x

∫
y

pX,Y (x, y) ln

[
pX,Y (x, y)

pX(x)pY (y)

]
dydx

= KL[pX,Y ‖pX ⊗ pY ].

(5.61)

It’s easy to see that these derivations hold if X and Y are both discrete. The tricky case is if

X is discrete and Y is continuous. Certainly, the derivations still work if we can interchange

integrals and sums, which is true for finite sums. However, when the sums are infinite, we

are effectively interchanging limits and integration. I don’t know enough measure theory to

know when this is possible.
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5A.4 MF-BOCD algorithm in didactic code

This Python code is a didactic example of the MF-BOCD algorithm. At each time step,

the algorithm (1) chooses a data fidelity using maximal information rate; (2) observes a

datum of the chosen fidelity; (3-4) computes the posterior predictive and run-length posterior

distributions; (5) updates the model parameters; and (6) makes a prediction. Please see the

code repository3 for a complete example.

1 import numpy as np

2 from scipy.special import logsumexp

3

4 def mf_bocd(data, model, hazard, costs):

5 J, T = data.shape

6 log_message = np.array([1])

7 log_R = np.ones((T+1, T+1))

8 log_R[0, 0] = 1

9 pmean = np.zeros(T)

10 igs = np.empty(J)

11 choices = np.empty(T)

12

13 for t in range(1, T+1):

14

15 # 1. Choose fidelity.

16 rl_post = np.exp(log_R[t-1, :t])

17 for j in range(J):

18 igs[j] = compute_info_gain(t, model, rl_post, log_message, hazard, j)

19 j_star = np.argmax(igs / costs)

20 choices[t-1] = j_star

21

22 # 2. Observe new datum.

23 x = data[j_star, t-1]

24

25 # 3. Compute predictive probabilities.

26 log_pis = model.log_pred_prob(t, x, j_star)

3https://github.com/gwgundersen/mf-bocd
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27

28 # 4. Estimate run length distribution.

29 log_growth_probs = log_pis + log_message + np.log(1 - hazard)

30 log_cp_prob = logsumexp(log_pis + log_message + np.log(hazard))

31 new_log_joint = np.append(log_cp_prob, log_growth_probs)

32 log_R[t, :t+1] = new_log_joint

33 log_R[t, :t+1] -= logsumexp(new_log_joint)

34

35 # 5. Update model parameters and message pass.

36 model.update_params(t, x, j_star)

37 log_message = new_log_joint

38

39 # 6. Predict.

40 pmean[t-1] = np.sum(model.mean_params[:t] * rl_post)

41

42 return choices, np.exp(log_R), pmean

5A.5 Ablation studies

Here, we report the results of an ablation study for the multi-fidelity Gaussian and multi-

fidelity Bernoulli models described in Section 5.3.3. For varying costs, a multi-fidelity model

using information gain-based switching was run on data generated from their respective data

generating proceses. The percentage of low-fidelity observations was recorded; call this Plow.

Then a randomized multi-fidelity model was run on the same data set. At each time step,

the randomized model chose low-fidelity data based on a Bernoulli random variable with

bias Plow. The goal of this experiment is to demonstrate that when the model switches to

high-fidelity data is important to model performance, not just the fact that some percentage

of high-fidelity data are used. We found that for both Gaussian (Table 5A.5.1) and Bernoulli

data (Table 5A.5.2), choosing when to switch fidelities was often useful.
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Table 5A.5.1: Ablation study for multi-fidelity Gaussian models. “LF only” is BOCD using
only low-fidelity data. Mean and two standard errors, representing 95% confidence inter-
vals, are reported over 200 trials. Bold numbers indicate statistically significant using 95%
confidence intervals.

MSE L1

LF (%) LF only Random Info-based LF only Random Info-based

1

0.879 (0.034)

0.046 (0.056) 0.003 (0.001)

270.87 (8.35)

5.98 (3.06) 73.92 (9.61)
2 0.125 (0.073) 0.111 (0.046) 18.18 (7.37) 77.68 (9.79)
38 0.680 (0.118) 0.494 (0.059) 162.31 (12.97) 161.05 (11.08)
53 0.702 (0.091) 0.483 (0.066) 183.40 (11.36) 173.01 (10.46)
60 0.752 (0.140) 0.452 (0.037) 186.11 (10.89) 174.95 (10.13)
67 0.665 (0.075) 0.466 (0.036) 187.72 (10.01) 173.41 (9.91)
74 0.643 (0.064) 0.480 (0.043) 182.18 (9.48) 175.88 (9.36)
80 0.656 (0.087) 0.492 (0.044) 184.66 (9.20) 175.70 (9.20)
97 0.547 (0.028) 0.537 (0.028) 176.76 (9.40) 175.34 (9.33)

Table 5A.5.2: Ablation study for multi-fidelity Bernoulli models. “LF only” is BOCD using
only low-fidelity data. Mean and two standard errors, representing 95% confidence inter-
vals, are reported over 200 trials. Bold numbers indicate statistically significant using 95%
confidence intervals.

MSE L1

LF (%) LF only Random Info-based LF only Random Info-based

9

0.123 (0.009)

0.003 (0.001) 0.002 (0.000)

186.27 (7.02)

45.55 (6.04) 40.31 (5.43)
21 0.008 (0.001) 0.009 (0.002) 76.42 (7.68) 71.88 (7.54)
25 0.011 (0.002) 0.011 (0.002) 84.47 (8.11) 80.61 (7.89)
46 0.025 (0.003) 0.021 (0.003) 124.80 (7.07) 117.34 (7.31)
61 0.040 (0.004) 0.034 (0.005) 143.87 (6.34) 139.88 (7.23)
68 0.050 (0.005) 0.040 (0.005) 158.48 (6.34) 149.79 (7.02)
73 0.057 (0.005) 0.048 (0.006) 163.68 (6.39) 158.08 (6.66)
83 0.077 (0.006) 0.064 (0.007) 174.01 (6.21) 170.26 (6.49)
90 0.098 (0.007) 0.082 (0.007) 184.46 (6.11) 178.86 (6.28)
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5A.6 Experiment details

5A.6.1. CamVid experiment details

The pretrained MobileNets were downloaded from the Fastseg Python library.4

We can estimate the computational cost of MF-BOCD (λMF) relative to BOCD using only

high- (λHF) and low- (λLF) fidelity data. We used 85 low- and 86 high- fidelity observations.

The low- (high-) fidelity observation model required 19.48 (36.89) billion flops (Table 5A.6.1).

Computing the information gain required 465,291 flops. The total cost of our algorithm in

billions of flops is

λLF = 171×19.5 ≈ 3333,

λHF = 171×36.9 ≈ 6303,

λMF = 0.00046+(85×19.5) + (86×36.7) ≈ 4827.

As we can see, decision-making has a marginal cost.

Table 5A.6.1: Observation model details for CamVid and MIMII experiments. (CamVid)
The high-fidelity model has roughly twice times the number of flops and higher accuracy as
measured by intersection-over-union (IoU) on the Cityscapes data set. (MIMII) The high-
fidelity model requires roughly 250 times as many floating point operations (ops). “FC”,
“M”, and “B” mean fully-connected, millions, and billions respectively.

Fidelity Model Ops Accuracy

CamVid
HF V3-large 36.86 B 72.3 (IoU%)
LF V3-small 19.48 B 67.4 (IoU%)

MIMII
HF MicroNet-AD(M) 124.7 M 96.15 (AUC%)
LF Two-layer FC 0.5 M 86.7 (AUC%)

5A.6.2. MIMII experiment details

In the MIMII experiment, the output of the observation models (Table 5A.6.1) is a scalar

anomaly score in the range [0, 1], where 0 indicates normal machine operation. An illustration

4https://github.com/ekzhang/fastseg
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Figure 5A.6.1: Illustration of pipeline to generate anomaly scores from log-Mel spectrograms
using deep neural networks.

of how these scores are obtained for an audio clip is shown in Figure 5A.6.1. To convert

these anomaly scores to binary numbers for a Bernoulli multi-fidelity posterior predictive

model, we thresholded the scores to integers in {0, 1}. The quality of the observation models

depends on the choice of threshold. For examples of these data, see Figure 5A.6.2. To select

the appropriate threshold, we used the intersection of the false negative and false positive

rate curves, which corresponds to the top-left corner of the receiver operating characteristic

(ROC) curves for each machine and each observation model (Figure 5A.6.3).
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Figure 5A.6.2: Examples of MIMII anomaly scores, five audio clips for each machine. Dashed
red lines separate audio clips.
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Figure 5A.6.3: False positive (FPR) and false negative rates (FNR) for high- (HF) and
low- (LF) fidelity observation models on MIMII cross-validation data. Vertical dashed lines
indicated the chosen threshold

Figure 5A.6.4: Illustration of MIMII data after converting log-Mel spectrograms to binary
numbers with machine- and observation model-specific thresholds. The true binary value is
denoted with a black line.

201



Chapter 6

Conclusion

In this final chapter, I discuss future directions for the three lines of work proposed in this

thesis. I conclude by briefly reviewing the main contributions of my work.

6.1 Future directions

6.1.1. Joint analysis of GTEx v8 data

Due to a data embargo, our work on deep probabilistic CCA used the GTEx v6 (rather than

v8) data set, which contains 2221 paired samples across 29 tissue types. (See Section 3.1 for

details.) In follow-up work, we are extending our joint analysis to the larger GTEx v8 data

set [Consortium et al., 2020]. This contains bulk gene expression profiles, genotype data, and

histological images for 935 donors across 55 tissues, for a total of 13,360 samples across all

three modalities. This is roughly six times as many samples as in GTEx v6. Joint analysis

of this larger data set will provide an unprecedented view into the relationship between

molecular features and histological image features.

6.1.2. Structured priors for RFLVMs

As discussed in Section 4.3.2, RFLVMs are identifiable up to the rotation and scale of the

latent variables. To accelerate the Gibbs sampler, we arbitrarily fixed the scale of the latent

variables by adjusting the covariance matrix [Liu et al., 1998, Ročková and George, 2016].

However, this covariance adjustment prevents heteroscedasticity in the latent features and
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correlation between the latent variables. This in turn limits the use of more structured priors

on the latent space. In particular, our results in Section 4.4.2 were suboptimal relative to a

Poisson GPLVM with a GP prior on the latent space [Wu et al., 2017]. In that experiment, a

smooth prior on the latent variables is desirable, since we hypothesize that the latent struc-

ture of hippocampal place cells should encode spatial information. A natural extension to

the RFLVM framework, and one that we are currently pursuing, is to forgo this covariance

adjustment step in favor of more structured priors, such as the dynamic prior used in Gaus-

sian process dynamic models [Wang et al., 2005] or a GP prior with a Matérn kernel used

in Wu et al. [2017]. This would enable modelers to encode more domain-specific structure

into the inferred latent variables and broaden the applicability of RFLVMs.

6.1.3. Generalized MF-posterior framework

In Section 5.3, we proposed the MF-posterior, which re-weights the terms in the data like-

lihood based on fidelity-specific hyperparameters. This idea was explored because raising

data likelihoods to a power is an established technique [Heide et al., 2020, Grünwald et al.,

2017, Walker and Hjort, 2001, Bissiri et al., 2016, Miller and Dunson, 2018, Wang et al.,

2017] and when dealing with models in the exponential family, often induces new distribu-

tions that are still tractable [Miller and Dunson, 2018]. This is appealing for models such

as BOCD, which require estimating the posterior predictive distribution many times. How-

ever, the MF-posterior is an orthogonal idea to changepoint detection. A natural extension

to the MF-BOCD framework would be to explore the MF-posterior in isolation, with more

theoretical analysis on how the posterior concentrates along two axes, the data set size and

values of the fidelity hyperparameters. This might allow for novel and tractable multi-fidelity

modeling for a broader class of models.

6.2 Summary of contributions

Scientists have been interested in latent variable models since the pioneering work on meth-

ods such as factor analysis [Spearman, 1904], PCA [Pearson, 1901], and CCA [Hotelling,

1936]. These linear–Gaussian factor models have been reformulated as state-space models
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such as the Kalman filter [Kalman, 1960] and HMMs [Baum and Petrie, 1966] and as prob-

abilistic models [Tipping and Bishop, 1999, Bach and Jordan, 2005]. While these linear–

Gaussian factor models are still popular today, more flexible latent variable models have

only recently received more attention from the research community, such as the autoen-

coder [Baldi and Hornik, 1989], the variational autoencoder [Kingma and Welling, 2013], the

GPLVM [Lawrence, 2004], BOCD [Adams and MacKay, 2007, Fearnhead and Liu, 2007],

deep CCA [Andrew et al., 2013], and deep HMMs [Krishnan et al., 2017]. Inference for

flexible latent variable models is challenging because the latent variables induce complex

dependencies between the hidden and observed variables and because flexible models are

typically not conjugate.

In this thesis, I contributed the first end-to-end inference framework for composing deep

neural networks with probabilistic CCA and showed that the model inferred interpretable

and biologically meaningful latent structure. I then proposed the use of random features to

extend the GPLVM framework to non-Gaussian data likelihoods and showed that we could

build competitive nonlinear dimension reduction models for a variety of data likelihoods

in the exponential family. In particular, we were able to infer the position of a rat given

neural recordings of its hippocampal place cells. And finally, I proposed the first use of

multi-fidelity modeling to accelerate inference for BOCD. We showed that we could lower

the computational cost of BOCD by actively selecting each datum’s fidelity based on maxi-

mizing the information about the posterior distribution over changepoints. Even when using

state-of-the-art neural network architectures designed for commodity hardware, the cost of

decision-making was insignificant relative to the cost of the cheapest observation models.

Latent variable models allow scientists to build, infer, and critique statistical models

of their data using mathematically principled tools and techniques. While the work in this

thesis spans a broad range of models and applications, the underlying theme is an ambition to

aid the work of researchers and engineers through practical inference algorithms for flexible,

tractable, and scalable latent variable models.
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Appendix A

Prior Presentations and Publications

1. Active multi-fidelity Bayesian online changepoint detection.
Gregory W. Gundersen, Diana Cai, Chuteng Zhu, Barbara E. Engelhardt, Ryan P. Adams.
Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence, 2021.

2. Latent variable modeling with random features.
Gregory W. Gundersen∗, Michael Minyi Zhang∗, Barbara E. Engelhardt.
24th International Conference on Artificial Intelligence and Statistics, 2021.

3. End-to-end training of deep probabilistic CCA for joint modeling of paired biomedical
observations.
Gregory W. Gundersen, Bianca Dumitrascu, Jordan T. Ash, Barbara E. Engelhardt.
Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, 2019.

4. End-to-end training of deep probabilistic CCA for joint modeling of paired biomedical
observations.
Gregory W. Gundersen, Bianca Dumitrascu, Jordan T. Ash, Barbara E. Engelhardt.
Third workshop on Bayesian Deep Learning, Advances in Neural Information Processing
Systems 31, 2018.

* Denotes equal contribution.
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Société Mathématique de France, 65:132–148, 1937.

John Dowling and Edward Gassner. Take the world from another point of view (film),
produced by wgbh-tv boston. reviewers. American Journal of Physics, 44(9):900–901,
1976.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics letters B, 195(2):216–222, 1987.

Kumar Avinava Dubey, Michael Minyi Zhang, Eric Xing, and Sinead Williamson. Dis-
tributed, partially collapsed MCMC for Bayesian nonparametrics. In Proceedings of
the Twenty Third International Conference on Artificial Intelligence and Statistics, vol-
ume 108, pages 3685–3695. PMLR, 2020. URL http://proceedings.mlr.press/v108/

dubey20a.html.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification and scene analysis,
volume 3. Wiley New York, 1973.

Barbara E Engelhardt and Matthew Stephens. Analysis of population structure: a unifying
framework and novel methods based on sparse factor analysis. PLoS Genet, 6(9):e1001117,
2010.

210

http://proceedings.mlr.press/v108/dubey20a.html
http://proceedings.mlr.press/v108/dubey20a.html


Gökcen Eraslan, Lukas M Simon, Maria Mircea, Nikola S Mueller, and Fabian J Theis.
Single-cell RNA-seq denoising using a deep count autoencoder. Nature communications,
10(1):1–14, 2019.

Elena A Erosheva and S McKay Curtis. Dealing with rotational invariance in Bayesian
confirmatory factor analysis. Department of Statistics, University of Washington, Seattle,
Washington, USA, 2011.

Michael D Escobar and Mike West. Bayesian density estimation and inference using mixtures.
Journal of the American Statistical Association, 90(430):577–588, 1995.

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau,
and Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural
networks. Nature, 542(7639):115, 2017.

Zhou Fan, Ron O Dror, Thomas J Mildorf, Stefano Piana, and David E Shaw. Identifying
localized changes in large systems: Change-point detection for biomolecular simulations.
Proceedings of the National Academy of Sciences, 112(24):7454–7459, 2015.

Paul Fearnhead. Exact and efficient Bayesian inference for multiple changepoint problems.
Statistics and computing, 16(2):203–213, 2006.

Paul Fearnhead and Zhen Liu. On-line inference for multiple changepoint problems. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):589–605, 2007.

Sarah Ferguson, Brandon Luders, Robert C Grande, and Jonathan P How. Real-time pre-
dictive modeling and robust avoidance of pedestrians with uncertain, changing intentions.
In Algorithmic Foundations of Robotics XI, pages 161–177. Springer, 2015.

Thomas S Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of
Statistics, pages 209–230, 1973.

Roger Fletcher. A new approach to variable metric algorithms. The computer journal, 13
(3):317–322, 1970.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, train-
able neural networks. arXiv preprint arXiv:1803.03635, 2018.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?
the kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361. IEEE, 2012.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B
Rubin. Bayesian data analysis. Chapman and Hall/CRC, 2013.

Matthew Gentzkow and Jesse M Shapiro. What drives media slant? Evidence from US daily
newspapers. Econometrica, 78(1):35–71, 2010.

211



Krzysztof J Geras, Stacey Wolfson, S Kim, Linda Moy, and Kyunghyun Cho. High-resolution
breast cancer screening with multi-view deep convolutional neural networks. arXiv preprint
arXiv:1703.07047, 2017.

Alexandra Gessner, Javier Gonzalez, and Maren Mahsereci. Active multi-information source
Bayesian quadrature. In Uncertainty in Artificial Intelligence, pages 712–721. PMLR,
2020.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521
(7553):452, 2015.

Zoubin Ghahramani, Geoffrey E Hinton, et al. The em algorithm for mixtures of factor
analyzers. Technical report, Technical Report CRG-TR-96-1, University of Toronto, 1996.

Joyee Ghosh and David B Dunson. Default prior distributions and efficient posterior com-
putation in Bayesian factor analysis. Journal of Computational and Graphical Statistics,
18(2):306–320, 2009.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Math-
ematics of computation, 24(109):23–26, 1970.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional
networks using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, vol-
ume 1. MIT press Cambridge, 2016.

Jonathan Goodman and Jonathan Weare. Ensemble samplers with affine invariance. Com-
munications in applied mathematics and computational science, 5(1):65–80, 2010.

Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierar-
chical Poisson factorization. In UAI, pages 326–335, 2015.

GPy. GPy: A Gaussian process framework in Python. http://github.com/SheffieldML/
GPy, 2012.

Peter Grünwald, Thijs Van Ommen, et al. Inconsistency of Bayesian inference for misspec-
ified linear models, and a proposal for repairing it. Bayesian Analysis, 12(4):1069–1103,
2017.

Varun Gulshan, Lily Peng, Marc Coram, Martin C Stumpe, Derek Wu, Arunachalam
Narayanaswamy, Subhashini Venugopalan, Kasumi Widner, Tom Madams, Jorge Cuadros,
et al. Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. Jama, 316(22):2402–2410, 2016.

212

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy


Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis:
An overview with application to learning methods. Neural computation, 16(12):2639–2664,
2004.
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